
coolOrange Wiki
• 06. Customization

• Anatomy of a powerJobs script

• Code snippets

• Environment Variables

• Error Handling

• IDEs for powershell

• Modules

• PDF on item lifecycle change

• PowerShell scripts and modules

• The PowerJobs Objects

• 2013

• 2014

• powershell general

• Create .csv from BOM

• Create DWG from an IDW

• Create PDF from IDW

• Create textfile via template

• Create visible or invisible attachments

• Data to XML

• PDF in an external folder

• Print via Inventor

• Release via jobserver

• Retrieve the user that queued the job

• Selected files to ZIP

• Send email via jobserver

• Create .csv from BOM

• Create DWG from an IDW

1

• Create textfile via template

• Data to XML

• PDF in an external folder

• Print via Inventor

• Release via jobserver

• Retrieve the user that queued the job

• Selected files to ZIP

• Send email via jobserver

• Copy file in a directory

• Insert into SQL server

• Print/convert Office documents

• Set default printer

• Simple document print on default printer

• 07. Patchnotes

• 08. Troubleshooting

• 09. FAQ

• Convert PDF to DWF

• How can I add a watermark/stamp to pdf?

• How can I add the revision to the name of the pdf-file?

• How can I convert pdf to pdf/a?

• How can I create a pdf with corresponding properties from original file?

• How can I create a PDF with same category, revision, state as the original file?

• Where's documentation for the Vault API?

Powered by

2

06. Customization

Overview
This section contains everything about customizing powerJobs.

Related
Topics
Code snippets

Here you can find some code snippets and samples.

IDEs for powershell
Describes in detail some options you have when choosing an IDE for working with powershell scripts.

PowerShell scripts and modules
Instead of coding your Job in languages like C# - with the need of compiling the code and deploying
the assemblies - powerJobs uses the flexibility of PowerShell scripts that can be modified at any time
– without the need to compile it.powerJobs interprets the ps1 files when the Job Processor executes
your job.

Tutorials

• Anatomy of a powerJobs script (Beginner)

• PDF on item lifecycle change (Beginner)

References

• Environment Variables

• Error Handling

• Modules

• The PowerJobs Objects

http://wiki.coolorange.com/powerJobs/06._Customization
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

3

Anatomy of a powerJobs script
1. Overview

2. Details

3. Structure

3.1. 2013

3.2. 2014

4. What's Next

5. Related

Overview
In this section we analyze the typical building blocks of a powerJobs script.

Details
The anatomy of a powerJobs script is very simple and clean, there is a preparation and a working script part. All gets

also explained on the basis of the example_script script and the included comments.

Structure

2013

In the preparation part the script reads all the parameters and saves them, if necessary, in variables. Then the

powerJobs script catalyzes the important information out of the previously saved variables, afterwards it controls, if

all information and parameters have regular values. Is that case the script will start with its proper function.

The first if clause has only a function if you are using it for debugging, because you won’t need the manual loading

of the dll or the manual login to the vault, when you are running the job with powerJobs, also you won't create the

vault object by yourself. This part has only a function for debugging purposes.

http://wiki.coolorange.com/powerJobs/06._Customization
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

4

if(!$IAmRunningInJobProcessor){Import-Module
"$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"#
möchte[System.reflection.Assembly]::LoadFrom($env:POWERJOBS_DLL)$vault = New-Object
-type coolOrange.PowerJobs.VaultProxy$vault.Login("Administrator","","localhost","Vault")# get
the file$file = $vault.GetUniqueLatestFileByFilename("Catch Assembly.idw")if(!$file) { throw ("File
cannot be found") }}else{

This is now the standard preperation of the script in the case you are running it with powerJobs.

get the file$fileID = $vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }$file =
$vault.DocService.GetFileById($fileID)}# get the latest version of the file in case a sync prop has
been executed before the job$file = $vault.DocService.GetLatestFileByMasterId($file.MasterId)#
in the settings are some basic variables defined to get an easy customaztion of the script#region
Settings$showPDF = $true #change this setting to $true or $false for showing/hiding the
PDF$PDFfileName = $file.Name + ".pdf" #define here the file name for the generated
PDF#endregion$ext = [System.IO.Path]::GetExtension($file.Name)# here gets the file extension
compared with the allowed files typesif(($ext -eq ".idw") -or ($ext -eq ".dwg") -or ($ext -eq
".iam") -or ($ext -eq ".ipt")){

After the preparation the script starts with its real task. Here the script can do everything you want, for example

print documents, send emails to specific persons etc. Our example script will publish the chosen file as a pdf file.

There are more sample jobs, listed in the sample job topic.

publish (generate the pdf attachment)$localDestFile = "C:\TEMP\" + $PDFfileName# here you
can chose your generated file type with the argument$publisher=$vault.GetPublisher("PDF")#
select the destination of the newfile$publisher.OutputFile=$localDestFile# create the new pdf file
and save it$publisher.Publish($file.Id)}

The vault objects has some methods and members. They are listed in the $vault object topic.

2014

powerJobs 2014 has a very nice way for preparing the debug environment. Just call this line in your
debugger and you will have access to the $vault, $vaultConnection, $vaultExplorerUtil and $powerJobs:

PrepareEnvironment

On top of your job script you should import the VaultHelper module to have access to well prepared
debug functionalities like:

Import-Module "$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"

$file = PrepareEnvironmentForFile "Catch Assembly.idw" $true

This function helps you to get the right file for your environment (Debug or JobProcessor). If you are
running inside of JobProcessor it takes the file from the $powerJobs.Job parameter. If you are running in

http://wiki.coolorange.com/powerJobs/06._Customization
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

5

debug-mode, it searches the file by the passed in filename. The last parameter tells if you want to have
the latest version of the file.

For easier debugging you have now the ability to use the $powerJobs.Log property. You have direct
access to the powerJobs logging (configured in the log4net configuration file).

What's Next
This is what was achieved and what was omitted in this tutorial.

Related
• 06. Customization

http://wiki.coolorange.com/powerJobs/06._Customization/Anatomy_of_a_powerJobs_script
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

6

Code snippets
1. Overview

2. INFO

3. Related

Overview
Here you can find some code snippets and samples.

INFO

The code examples ("The samples") were created to the best of our knowledge.
The samples' main purpose is for learning and getting new ideas and are not

guaranteed to conform to any programming style, standard, or be an adequate
answer for any given problem.

You are free to use, extend and distribute the samples, and you are solely
responsible for it's use and performance.

coolOrange is not responsible for data loss, hardware damage, or disaster
related to the use of the samples.

Related
2013

Here you can find some code snippets and samples.

2014
Here you can find some code snippets and samples.

http://wiki.coolorange.com/powerJobs/06._Customization/Anatomy_of_a_powerJobs_script
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

7

powershell general
This section is for general powershell scripts, that aren´t related to any coolOrange product.

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

8

Environment Variables
1. Overview

2. Details

Overview
Gives a short overview of the powerJobs specific environment variables.

Details
PowerJobs sets, when it gets installed, 3 environment variables. They contain only paths to folder of the jobs,

modules and the powerJobs.dll. powerJobs for example loads the powerJobs.dll by itself, but if you want to debug

your job you need also the dll, now you can easily access the dll by the environment variable POWERJOBS_DLL.

Thats the script command you will use to load it manually:

System.reflection.Assembly]::LoadFrom($env:POWERJOBS_DLL)

The 3 environment variables:

• POWERJOBS_DLL

• POWERJOBS_JOBSDIR

• POWERJOBS_MODULESDIR

You can search the environment variables also by yourself. Open first the PowerShell and then write "cd env:", then

in the next row write "dir", now all environment variables of your system should be listed.

http://wiki.coolorange.com/powerJobs/06._Customization/Environment_Variables
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

9

Error Handling
1. Overview

2. Details

Overview
Describes how error handling works in a powerJobs script.

Details
Powerjobs handles errors in scripts differently from the normal PowerShell execution. When a script is
executing in powershell, the default behavior is to continue the execution of the script when an error
occurs in one of the commands.

In powerjobs the errorhandling is changed so that an exception is thrown if an error occurs. If the
exception is not caught in your script the script will be cancelled and the exception will be caught in the
powerJobs dll. The job will fail and an error message will be written to the log.

If you want to handle errors yourself in your script you can use PowerShell's built in exception
mechanism and use try/catch blocks, or you can change the error handling behavior of PowerShell by
changing the value of the $ErrorActionPreference Variable.

The following table lists the various options for the $ErrorActionPreference:

Identifier Numeric
Value Description

"Continue" 2 This is the default preference setting. The error object is
written to the output pipe and added to $error, and $? is

http://wiki.coolorange.com/powerJobs/06._Customization/Environment_Variables
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

10

set to false.
Execution then continues at the next script line.

"SilentlyContinue" 0

When this action preference is set, the error message is not
written to the output pipe before continuing execution. Note
that it is still added to $error and $? is still set to false.
Again, execution continues at the next line.

"Stop" 1

This error action preference changes an error from a non-
terminating error to a terminating error. The error object is
thrown as an exception instead of being written to the
output pipe. $error and $? are still updated. Execution does
not continue.

"Inquire" 3
Prompts the user requesting confirmation before continuing
on with the operation.. At the prompt, the user can choose
to continue, stop or suspend the operation.

To change the value of the $ErrorActionPreference e.g. to "Continue" you can use the following
statement:

$ErrorActionPreference = “Continue”

You can also use the numeric value like this:

$ErrorActionPreference = 2

In powerJobs it is not recommended to use "Inquire" or numeric value 3.

To get more information about the log file please read the Activate Logging topic.

http://wiki.coolorange.com/powerJobs/06._Customization/Error_Handling
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

11

IDEs for powershell
1. Overview

2. Details

3. Powershell 2.0 ISE

3.1. 2014

4. PowerGUI

4.1. 2014

5. Related

Overview
Describes in detail some options you have when choosing an IDE for working with powershell scripts.

Details
Although you can create and edit powershell scripts with a simple tool as Microsoft's notepad that doesn't
mean you should. It is much more convenient to use a powershell development environment, and
fortunately there are some very good ones for free.

Powershell 2.0 ISE
With PowerShell 2.0 you get a free development environment, called PowerShell ISE. On Windows 7 this is already

part of the operating system, on older systems you get the ISE when you install PowerShell 2.0.

32 bit Version

If you are working on a 64bit system, you must make sure that you use the 32 bit version of the PowerShell ISE. It

can be found at C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell_ise.exe.

http://wiki.coolorange.com/powerJobs/06._Customization/Error_Handling
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

12

If you happen to use the 64 bit version and try to run or debug a powerJobs script in the ISE you will get
an error.

Support for .net 4

Out of the box, the powershell ISE is configured to use the .net 2.0 runtime. However, to run and debug
scripts for powerJobs 2013 the ISE must be configured to use the .net 4 runtime. You need to provide a
config file for that. Just create a textfile named powershell_ise.exe.config and paste the following lines
into it:

<?xml version="1.0" encoding="utf-8"?><configuration> <startup> <supportedRuntime
version="v4.0.30319" /> </startup></configuration>

Then save and copy the file besides the powershell_ise.exe.

2014

In general it depends on the Vault clients target platform. If your Vault-Client is 64 bit, use a 64 bit PowerShell ISE.

If your Vault client is 32, you have to use a 32 bit PowerShell ISE.

PowerGUI
Another powershell development environment is PowerGUI. It is also free and you can download it from
http://www.powergui.org.

32 bit Version

If you are working on a 64bit system, you must make sure that you use the 32 bit version of the
PowerGUI tools. The PowerGUI setup creates separate entries for the x86 tools on start menu group
during installation.

2014

Also for powerGUI you have to use the 64bit version if you have a 64bit VaultClient installed on your
machine. If your Vault client is 32bit, you have to use the 32bit powerGUI.

Related
• 06. Customization

http://wiki.coolorange.com/powerJobs/06._Customization/IDEs_for_powershell
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

13

http://www.powergui.org

Modules
1. Overview

2. Explanation

3. Details about powerJobs modules

4. Sample Modules

4.1. 2014

Overview
Here we give a description of the powershell modules concept as it is used by powerJobs.

Explanation
PowerShell modules provide an efficient, manageable and production-oriented way to package code. For example, if

you create in one job for powerJobs a clean and working function for sending e-mails with a pdf attachment, you

don’t want to copy/paste the function every time, you need it in a new job. So just save it in a module and import it

every time you need the same email function in different jobs. If you are programmer, you can say a module is very

similar to a class of C#, perhaps a module can be more with the cmdlets , just keep that explanation in mind.

Details about powerJobs modules
In powerJobs the moduls are stored under this path: C:\ProgramData\coolOrange\powerJobs\Modules

When powerJobs is started, it loads all modules from the previously mentioned folder in its environment and

provides them for every job. This way the programmers don’t have to think about importing and removing powerJob

modules.

http://wiki.coolorange.com/powerJobs/06._Customization/IDEs_for_powershell
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

14

Sample Modules

Two modules are already provided when you buy powerJobs.

The first one is coolOrange.powerJobs.CadHelper.psm1, it functions to check if all necessary software is installed.

The second one is coolOrange.powerJobs.VaultHelper.psm1, it includes the following functions to get an easy and

clean access to the vault folders/files:

• Add-VaultFile

• Add-VaultDesignVizualizationFile

• Add-VaultDesignVizualizationFile

• Get-CheckoutVaultFile

• Get-CheckinVaultFile

• Get-VaultFileAssociations

• Get-VaultFolder

2014

For a very easy starting of debugging, you can use the function: PrepareEnvironment (loads the
powerJobs environment and creates all the relevant powerJobs variables automatically for you in your
Debug environment). You have not to load the Autodesk assemblies manually, because powerJobs will
find the Vault Client installation and use the relevant assemblies from that directory.

This two functions are using the prepareEnvironment. They are creating also the $file and the $folder
object if needet:

• PrepareEnvironmentForFile

• PrepareEnvironmentForFolder

Very often you need Generic Lists and Generic Dictionaries in combination with the Vault API. Now we
give you the ability to create this generics with this functions:

• New-GenericList

• New-GenericDictionary

And because you can work now also with the new VDF, you can find some converter functions to convert
the File object in a VDF.File (and Folder):

• ToVdfFile

http://wiki.coolorange.com/powerJobs/06._Customization/IDEs_for_powershell
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

15

• ToVdfFolder

http://wiki.coolorange.com/powerJobs/06._Customization/Modules
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

16

PDF on item lifecycle change
1. Overview

2. Goal

2.1. First Step

2.2. Second Step

3. What's Next

4. Related

Overview
The standard PDF job that comes with powerJobs is prepared to create a PDF on a file lifecycle transition.
When you perform a lifecycle transition in Vault, and you did configured Vault to queue a job, some
default arguments will be passed to the job. One of the arguments is the File-Id. But if you configure
Vault to queue a job on an item lifecycle transition, then you will get the ItemId as a parameter. As
several files might be linked to your item, it's up to you to identify for which file attached to the item you
like to create a PDF.

Goal
After completing this tutorial you will know how to get the list of linked files to an item, how to find the
file you are looking for and finaly how to create a PDF out of it. It also shows you how to identify useful
Vault API commands.

First Step

The first step ist to identify a convinient API call in order to get the files linked to an item. This blog post
(http://blog.coolorange.com/2013/03/09/vault-webservice-trace/) describes how to activate the web
service trace and how to filter

http://wiki.coolorange.com/powerJobs/06._Customization/Modules
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

17

http://blog.coolorange.com/2013/03/09/vault-webservice-trace/

Second Step

Now we know that the function for getting the files associated to an item is
called GetItemFileAssociationsByItemIds. Unfortunately the drawings associated to an item, could be of
primary link if there is no model associated, or tertiary link if there is a model associated. Additoinal you
may have a DWG and IDW associated to the same item. So, the logic to pick the rigt drawing might have
to be adapted to your need. The code in the following lines will look for associated DWG or IDW. In case
there only one hit, then we will take that one. In case there are multiple hits, then we will see if one is
primary, otherwise we will just take the first.

$itemID = $vault.Job.Params["ItemId"]if($itemID){ #collect all associations $fileItemAssoc =
$vault.ItmService.GetItemFileAssociationsByItemIds(@($itemID),[Autodesk.Connectivity.WebServices.ItemFileLnkTypOpt]::Primary
-bor [Autodesk.Connectivity.WebServices.ItemFileLnkTypOpt]::Secondary -bor
[Autodesk.Connectivity.WebServices.ItemFileLnkTypOpt]::Tertiary) #search for associations of
type IDW or DWG $drawings = $fileItemAssoc | Where-Object { $_.FileName -like '*.idw' -or
$_.FileName -like '*.idw' } if($drawings -is [System.Array]) #test if the result is an array or a
single results { #if there are multiple results, lie a IDW or DWG, pick the one that is
primary $primary = $drawings | Where-Object { $_.Type -eq 'Primary' } if($primary
-ne $null) #if there is no primary, then just take the first one { $fileId =
$drawings[0].CldFileId } } else { $fileId = $drawings.CldFileId } if(!$fileID)
#if no file has been found, then quit the job with an entry in the log file { $item =
$vault.ItmService.GetItemsByIds(@($itemID)); $vault.Context.Log("No drawing found for
item
"+$item[0].ItemNum,[Autodesk.Connectivity.JobProcessor.Extensibility.MessageType]::eError);
return; }}

Now, in the standard PowerShell script for the PDF creation (CreatePDFasAttachment.ps1), quite at the
beginning you will find the following lines

$fileID = $vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }

Here you can see that in case the $fileID is not set, then an exception will be thrown. This is the case if
the job gets triggered from an object which is not a file, like in our case an item. By inserting the code
above between the 2 lines, the code will search for a file, and if given it will set the $fileID with the ID of
the according file. If there is no file, then the job will quit with success and make a entry in the log file.
As not every item has a file or drawing associated, in case where no drawing can be found, we just
silently quit.

What's Next
You may have to test your different scenarios and potentially adapt the code to your particular needs.
But overall, this code should cover the tipical scenarios.

Related
• 06. Customization

http://wiki.coolorange.com/powerJobs/06._Customization/PDF_on_item_lifecycle_change
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

18

PowerShell scripts and modules
1. Overview

2. Technology

2.1. Modules

2.2. 2014

2.3. Vendors

2.4. Background and History

3. Related

Overview

Instead of coding your Job in languages like C# - with the need of compiling the code and deploying the
assemblies - powerJobs uses the flexibility of PowerShell scripts that can be modified at any time –
without the need to compile it.
powerJobs interprets the ps1 files when the Job Processor executes your job.

Technology

In order to recognize a ps1 file as a Job for the Autodesk Job Processor the file has to be located in the folder:

C:\ProgramData\coolOrange\powerJobs\Jobs

and the powerJobs.vcet.config file has to be edited as described in chapter Adding Jobs. During startup of the job

processor all the ps1 files’ names are evaluated. If you add or remove a job with a ps1 file you need to restart the

job processor. If you edit a ps1 file while the job processor is running, you only need to save the ps1 file. The job

will detect the changes when the job is executed the next time and will reload the ps1 file.

http://wiki.coolorange.com/powerJobs/06._Customization/PDF_on_item_lifecycle_change
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

19

Modules
Modules are sets of functions which help you writing your ps1 scripts and Jobs. The code in the modules
is visible to all the ps1 script files. Modules have the file extension psm1:

In order to load a psm1 module to the context of your job the file has to be located in the folder:
%ProgramData%\Autodesk\Vault 2012\Extensions\coolOrange.PowerJobs.Handler\Modules
The module files are loaded during startup of the job processor. If you make changes to the module files
(i.e. add, edit, delete a file) you need to restart the job processor. Development, Testing We recommend
2 tools for development of PowerShell scripts. The first is the PowerShell ISE which is part of the
PowerShell 2.0 installation. An even better choice is the PowerGUI script editor which is part of the
PowerGUI product. You can download PowerGUI for free from http://www.powergui.org Both ISE and
PowerGUI have very useful interactive debuggers you can use to test your powerJobs scripts. When
working with these tools it is important to use the 32 bit environments when you are working on an OS
with 64bits. For PowerGUI you need to use the ScriptEditor_x86.exe or the AdminConsole_x86.exe, both
located in the install directory of PowerGUI. For the PowerShell ISE you find the 32bit version in
C:\Windows\SysWOW64\WindowsPowerShell\v1.0
To access the vault from a job, powerJobs creates a global variable called $vault. If the job script is
running within powerJobs in the job processor this variable exists and it represents the connection to the
‘vault world’ When you are running the script from within a standalone development environment no
such connection exists. You need to create this manually. The Vault Proxy variable ($vault) is not set if
your script is not executed in the context of the Autodesk Job Processor. For testing purposes you can
load the proxy and make a login to Vault manually:

if(!$vault) {[System.Reflection.Assembly]::LoadFrom("C:\Program Files (x86)\Autodesk\Vault
Professional
2011\Explorer\coolOrange.PowerJobs.dll")[coolOrange.PowerJobs.VaultProxy]::Login("Administrator","","localhost","Vault")$vault
= New-Object -TypeName coolOrange.PowerJobs.VaultProxy}

Before executing code in PowerGUI or ISE you should first start the vault client and connect it to the
vault so that all vault services are up and running and initialized. Otherwise you may get connection
problems when connecting from the debugger the first time. In a job executing in the job processor you
would get the object id of the vault object (file, item etc.) from the $vault like so:
$fileId = $vault.Job.Params["FileId"]
In case of executing in the debugger you must provide the $fileId information by retrieving it from the
vault, e.g. like so:
$coFile=$vault.GetUniqueLatestFileByFilename("cross head sub.dwg")
$fileId=$coFile.Id
A typical vault script header block would then look like this:

if(!$vault) {[System.reflection.Assembly]::LoadFrom("C:\Program Files (x86)\Autodesk\Vault
Professional
2011\Explorer\coolorange.powerJobs.dll")[coolOrange.PowerJobs.VaultProxy]::Login("Administrator","","localhost","Vault")$vault
= New-Object -type coolOrange.PowerJobs.VaultProxy
$coFile=$vault.GetUniqueLatestFileByFilename("cross head sub.dwg")$fileId=$coFile.Id}else{#
get the fileif(!$fileId){$fileId = $vault.Job.Params["FileId"]}}

2014
In order to load a psm1 module to the context of your job the file has to be located in the folder:
%ProgramData%\coolorange\powerJobs\Modules
The module files are loaded during startup of the job processor.

http://wiki.coolorange.com/powerJobs/06._Customization/PDF_on_item_lifecycle_change
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

20

http://www.powergui.org

To access the vault from a job, powerJobs creates the global variables called
$vault,$vaultConnection,$vaultExplorerUtil and $powerJobs. If the job script is running within powerJobs
in the job processor this variable exists and it represents this:

• $vault = WebserviceManager

• $vaultConnection = Connection object from the VDF

• $vaultExplorerUtil = IExplorerUtil

• $powerJobs = contains the Job object, the Logging and other helpfult functions for searching
files,items and creating PDF,DWFX,...

When you are running the script from within a standalone development environment no such connection
exists. You need to call this two lines that will create this variablies for you:

[System.reflection.Assembly]::LoadFrom("$env:POWERJOBS_DLL")
[coolOrange.PowerJobs.PowerShellVaultProxy]::Instance.Login(USERNAME,PASSWORD,SERVER,VAULTNAME)

Please check that the logincredentials to your vault are correct!
All the variables are created automatically in your powerShell environment.

Vendors

PowerShell is a Microsoft technology that comes standard with any Windows 7 and other Windows
operating systems.

Background and History

To know more about Windows PowerShell read this link http://en.wikipedia.org/wiki/
Windows_PowerShell.

Related
• 06. Customization

http://wiki.coolorange.com/powerJobs/06._Customization/PowerShell_scripts_and_modules
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

21

http://en.wikipedia.org/wiki/Windows_PowerShell
http://en.wikipedia.org/wiki/Windows_PowerShell

The PowerJobs Objects
1. Overview

2. Details

3. Methods of $powerJobs

3.1. GetPublisher

3.1.1. Publisher attributes:

3.2. add_OnBeginPublish

3.3. DownloadDependentFiles

3.3.1. 2014

3.4. DownloadDependentFiles

3.5. GetUniqueLatestFileByFilename

3.6. GetLatestItemByNumber

4. Members

4.1. 2014

5. Related

Overview
Describes in detail the available settings and controls for a feature in the product.

Details
Offer the details a user needs to know about the definition, parameters, and so on. Tables are extremely
useful for looking up information and organizing the details that readers want to know.

Methods of $powerJobs

http://wiki.coolorange.com/powerJobs/06._Customization/PowerShell_scripts_and_modules
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

22

GetPublisher

GetPublisher(string publishformat)

Description:

Gets the publisher for the choosen filetype

Parameter:

PDF

DWF

DWFx

SheetMetalDXF

Publisher attributes:

bool IgnoreCheckOutCheck

Description:

If value is set to ' 1 ' there will be no check if the file is checked out or not.

Values:

0;1

string Options

Description:

In this string you can define arguments for ' .dxf-files '. The options are seperated by ' & ' and you can
assign multiple values by seperating them with ' ; '.

Values:

This is part of the inventor-api. For a full description take a look at the inventor-api help under

HTML/DataIO_Sample.htm Translate - Sheet Metal to DXF API Sample

string OutputFile

http://wiki.coolorange.com/powerJobs/06._Customization/PowerShell_scripts_and_modules
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

23

Description:

Sets Filepath and Filename + Extension for the published file

Values:

path+filename+extension

int GeneratorEnginePublishCount

Description:

The number of publishingprocesses till inventor will be restarted. Keep in mind that higher values are
resulting in worse performance.

Values:

Any integer value. Standard is 10.

bool Publish(fileID)

Description:

Publishs a file

Parameter:

long fileID

bool Open(fileID)

Description:

Opens a File without publishing it

Parameter:

long fileID

http://wiki.coolorange.com/powerJobs/06._Customization/PowerShell_scripts_and_modules
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

24

add_OnBeginPublish

add_OnBeginPublish(

{

param($publisher, $document, $application)

%do something with $document or $application...

})

Description:

This Method lets you make changes to the visualization document, before creating the final version of it.

If the publisher is working with an Inventor file, the $document variable will contain a reference to
Inventor API Document instance of the current document. From here you can use the Inventor API o do
all sorts of things.

If the publisher is working with TrueView, the $docment variable will be a string containing the filename
of the DSD file used to create the TrueView output. Here you can use the powershell text manipulation
facilities to modify this DSD file to your needs.

Parameter:

$publisher: The instance of the publisher, the event is beeing called from.

$document: The document, the publisher is working with.

DownloadDependentFiles

DownloadDependentFiles(vaultFileId)

Description:

Loads the specified file into a temporary directory. You have to delete the temporary file yourself
afterwards.

Parameter:

long vaultFieldID

2014

This function is removed from the API. The VDF provides allready functionality for this:

http://wiki.coolorange.com/powerJobs/06._Customization/PowerShell_scripts_and_modules
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

25

Autodesk.DataManagement.Client.Framework.Vault.Services.Connection Namespace.IFileManager
Interface.AcquireFiles

DownloadDependentFiles

DownloadDependentFiles(vaultFileId, targetDirectory)

Description:

Same as DownloadDependentFiles but you can declare the temporary directory

Parameter:

long vaultFieldID; string directorypath

GetUniqueLatestFileByFilename

GetUniqueLatestFileByFilename(string fname)

Description:

Gets the filepath of the latest file wih the choosen name

Parameter:

string filename

Returns:

VaultFile

GetLatestItemByNumber

GetLatestItemByNumber(string number)

Description:

Gets the latest Item with the choosen itemnumber

Parameter:

string Itemnumber

Returns:

VaultItem

http://wiki.coolorange.com/powerJobs/06._Customization/PowerShell_scripts_and_modules
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

26

Members
With these members you can use the respective Vault-API functions in your powershellscripts.

Vault API powerJobs

AdminService AdmService

BehaviorService BehService

CategoryService CatService

ChangeOrderService CoService

DocumentService DocService

DocumentServiceExtensions DocExtService

ForumService ForumService

InformationService InfoService

ItemService ItmService

JobService JobService

KnowledgeVaultService KvService

PackageService PackgService

PropertyService PropService

RevisionService RevService

http://wiki.coolorange.com/powerJobs/06._Customization/PowerShell_scripts_and_modules
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

27

SecurityService SecService

IExplorerUtil ExplorerUtil

2014

In powerJobs 2014 we have introduced $vault (Webservicemanager),$vaultConnection (VDF Connection)
and $vaultExplorerUtil (IExplorerUtils).

Because of this keep attention when upgrading from pwoerJobs 2013 to 2014, because a.e.
$vault.AdmService is now called like in the real WebserviceManager: AdminService.

$vault.ExplorerUtil is now the $vaultExplorerUtil variable!

Related
• 06. Customization

http://wiki.coolorange.com/powerJobs/06._Customization/The_PowerJobs_Objects
Updated: Wed, 26 Feb 2014 10:18:53 GMT

Powered by

28

2013
1. Overview

2. Related

Overview
Here you can find some code snippets and samples.

Related
• Create DWG from an IDW (Beginner)

• Create PDF from IDW (Beginner)

• Create visible or invisible attachments (Beginner)

• PDF in an external folder (Beginner)

• Print via Inventor (Intermediate)

• Release via jobserver (Intermediate)

• Retrieve the user that queued the job (Intermediate)

• Send email via jobserver (Intermediate)

• Create .csv from BOM (Advanced)

• Create textfile via template (Advanced)

• Data to XML (Advanced)

• Selected files to ZIP (Advanced)

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

29

2014
1. Overview

2. Related

Overview
Here you can find some code snippets and samples.

Related
• Create DWG from an IDW (Beginner)

• PDF in an external folder (Beginner)

• Print via Inventor (Intermediate)

• Release via jobserver (Intermediate)

• Retrieve the user that queued the job (Intermediate)

• Send email via jobserver (Intermediate)

• Create .csv from BOM (Advanced)

• Create textfile via template (Advanced)

• Data to XML (Advanced)

• Selected files to ZIP (Advanced)

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

30

powershell general
1. Overview

2. Related

Overview
This section is for general powershell scripts, that aren´t related to any coolOrange product.

Related
• Copy file in a directory (Beginner)

• Insert into SQL server (Beginner)

• Set default printer (Beginner)

• Simple document print on default printer (Beginner)

• Print/convert Office documents (Intermediate)

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

31

Create .csv from BOM
1. Overview

2. Code

2.1. Related

Overview
This tutorial gives you an example for creating a csv-file from the BOM via Powershell

Code

#To test this script, just copy&paste the content above into a new powershell file, for instance
called BOM_to_Excel.ps1, and save it into the powerJobs folder. #Edit the
JobProcessor.exe.config to declare your new job. For queueing the job, you might use the
LifecycleEventEditor and configure your job on a given lifecycle
change.if(!$IAmRunningInJobProcessor){ Import-Module
"$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"
[System.reflection.Assembly]::LoadFrom($env:POWERJOBS_DLL) $vault = New-Object -type
coolOrange.PowerJobs.VaultProxy $vault.Login("Administrator","","localhost","Vault") # get
the file $file = $vault.GetUniqueLatestFileByFilename("Pad Lock.iam") if(!$file) { throw ("File
cannot be found") }}else{ # get the file $fileID = $vault.Job.Params["FileId"] if(!$fileID) {
throw ("File ID not set") } $file = $vault.DocService.GetFileById($fileID)}#gets the items with
the file-id $items = $vault.ItmService.GetItemsByFileId($file.Id)#the item-masterid which you
need to get the bom$itemMaster = $items[0]if (!$items) {throw ("File has no item")}#Library to
use specific functions[System.Reflection.Assembly]::LoadFrom("C:\Program Files
(x86)\Autodesk\Autodesk Vault 2013 SDK\bin\Autodesk.Connectivity.WebServices.dll")#Gets the
BOM-file frome the vault$itemBOM =
$vault.ItmService.GetItemBOMByItemIdAndDate($itemMaster.Id,[System.DateTime]::MinValue,[Autodesk.Connectivity.WebServices.BOMTyp]::Tip,[Autodesk.Connectivity.WebServices.BOMViewEditOptions]::ReturnOccurrences)#different
variables to get specific BOM informations$boms = $itemBOM.ItemRevArray $bomsOcc =
$itemBOM.OccurArray $bomsAss = $itemBOM.ItemAssocArray#Gets LifeCyleStates of the
items$DispName = @{}$defs = $vault.ItmService.GetAllLifeCycleDefinitions()foreach($def in

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

32

$defs){ $DispName[$def.Id]=$def.DispName}#Gets the Quantity of the items$quantity =
@()for($i = 0;$i -lt $boms.Count;$i+=1){ for($j = 0;$j -lt $bomsAss.Count;$j+=1){
if($boms[$i].MasterID -eq $bomsAss[$j].CldItemMasterID){ $quantity +=
$bomsAss[$j].CldItemUsage } }}#Write here the path where the csv-file should be
placed$FilePath = "C:\<YourFolder>\BOM$($file.Name).csv"#Writes with the PS function
"out-file" the column names into
.csv-file"Number`tDetail_ID`tQuantity`tTitle`tRevision`tState`tUnits`n"|out-file
$FilePath#Writes with the PS function "out-file" the informations into .csv-file for($i = 0;$i -lt
$boms.Count;$i+=1){
"$($boms[$i].ItemNum)`t$($bomsOcc[$i].Val)`t$($quantity[$i])`t$($boms[$i].Title)`t$($boms[$i].RevNum)`t$($DispName[$boms[$i].LfCycStateId])`t$($boms[$i].Units)"|
out-file $FilePath -Append }

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Create_.csv_from_BOM
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

33

Create DWG from an IDW
1. Overview

2.

2.1. Code

3. Related

Overview
As DWG is quite popular, you might want to create a DWG from an IDW via jobserver.

At line 24 you can change it also to other formats (.stp,...) that you want to create.

Code

get the file via jobserver$fileID = $vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not
set") }$file = $vault.DocService.GetFileById($fileID)#Limits the files which get published$ext =
[System.IO.Path]::GetExtension($file.Name)#In this case, only .idw -files get
publishedif($ext.ToLower().Equals(".idw")){#The .idw-file gets created in the follow
path:$localDestFile = "C:\TEMP\" + $file.Name + ".pdf"#The file then gets published into a
pdf$publisher=$vault.GetPublisher("PDF")$publisher.OutputFile=$localDestFile#Eventhandler in
which you can create other file formats$publisher.add_OnBeginPublish({param($publisher,
$document)$compDef = $document.Document.ComponentDefinition#The pdf file get saved as a
.dwg file$document.Document.SaveAs("C:\TEMP\$($file.Name)" + ".dwg",$true)})#The
Eventhandler gets calledif(!$publisher.Open($File.Id)){throw "The .dwg-translation failed!"}}

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Create_DWG_from_an_IDW
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

34

Create PDF from IDW
1. Overview

2. Code

2.1. Related

Overview
create a PDF file from an IDW file next to the original.

Code
get the file via jobserver$fileID = $vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not
set") }$file = $vault.DocService.GetFileById($fileID)#Limits the files which get published$ext =
[System.IO.Path]::GetExtension($file.Name)#In this case, only .idw -files get
publishedif($ext.ToLower().Equals(".idw")){#Path for the PDF-file$localDestFile = "C:\TEMP\" +
$file.Name + ".pdf"#The file gets published into a
pdf$publisher=$vault.GetPublisher("PDF")$publisher.OutputFile=$localDestFile#The Eventhandler
gets calledif(!$publisher.Publish($File.Id)){throw "The PDF-translation failed!"}}

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Create_PDF_from_IDW
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

35

Create textfile via template
1. Overview

2. Goal

2.1. First Step

2.2. Example with an Assembly1.idw file:

3. Related

Overview
Explains how to complete a self-paced learning exercise using a feature in the product.

Goal
Supposing you have to write out several information into a file, and you like to keep the file format
flexible, the idea could be to use a template file to drive the format.

Steps

First Step

To use the script, create a file called "template.txt" (use the exact path in the script). Then open the
"template.txt" and write the property names from which you might write informations out into a file. Use
this Syntax: the propertynames have to be written in "{...}", the properties gets seperated by ";".
Example: {Name};This is my Classification: {Classification};It got created by: {Created By};. The
format is flexible. You can also define a html-page: <html><table
border="1"><tr><td>{Name};</td><td>{Classification};</td><td>{Created
By}</td></tr></table></html>

#To test this script, just copy&paste the content above into a new powershell file, for instance
called template.ps1, and save it into the powerJobs\Jobs folder.#Edit the JobProcessor.exe.config
to declare your new job. For queueing the job, you might use the LifecycleEventEditor and

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Create_PDF_from_IDW
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

36

configure your job on a given lifecycle change.if($vault -eq
$null){[System.reflection.Assembly]::LoadFrom($env:POWERJOBS_DLL)[coolOrange.PowerJobs.VaultProxy]::Login("Administrator","","localhost","Vault")$vault
= New-Object -type coolOrange.PowerJobs.VaultProxy}#Gets the file$fileID =
$vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }$file =
$vault.DocService.GetFileById($fileID)#Paths:#TEMPLATE-PATH$pathTemp =
"C:\<YourFolder>\template.txt"$FilePath =
"C:\<YourFolder>\file.txt"#Propertydefinitions$propDefs =
$vault.PropService.GetPropertyDefinitionsByEntityClassId("FILE")#Writes the
Propertydefinitionids in a System.Array to use a specific method$ids = @()foreach($f in
$propDefs){$ids+=$f.id}#gets the file-properties$props =
$vault.PropService.GetProperties("FILE",@($file.id),$ids)#Define RegularExpression, to get the
propertynames from the template-file$regex = [regex]"\{+(?i)\b[A-Z\s]+\b\}"$template =
Get-Content -Path $pathTemp$header = $regex.Matches($template)#Get the
valuesforeach($match in $header){$literalFieldName =
$match.Value.TrimStart("{").TrimEnd("}")$propId = 0foreach($pd in
$propDefs){if($pd.DispName.Equals($literalFieldName)){$propId=$pd.Id}}if($propId -gt
0){foreach($pi in $props){if($pi.PropDefId.Equals($propId)){$template =
$template.Replace($match.Value, $pi.Val)}}}}#Writes the values in a file$template |Out-File
$FilePath -Append

Example with an Assembly1.idw file:

template.txt:
{Name};This is my Classification: {Classification};It got created by: {Created By};

My output file: file.txt:
Assembly1.idw;This is my Classification: Design Document;It got created by: Administrator;

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Create_textfile_via_template
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

37

Create visible or invisible attachments
1. Overview

2. Settings

3. Related

Overview
This is a example for configuring the CreatePdfAsAttachment.ps1" script.

Settings
To create attachments you can use the "coolOrange.powerJobs.CreatePdfAsAttachment.ps1" script ,
which gets installed with the coolOrangePowerJobs installation. If you want to make the attachment
visible or invisible, open the "coolOrange.powerJobs.CreatePdfAsAttachment.ps1" file and go to line 35
and change:

$showPDF= $true

to

$showPDF= $false

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/
Create_visible_or_invisible_attachments

Updated: Wed, 26 Feb 2014 10:18:54 GMT
Powered by 38

http://www.coolorange.net/html/products.php

Data to XML
1. Overview

2. Code

2.1. Related

Overview
You may want to export information from Vault into an XML file.

Code
#To test this script, just copy&paste the content above into a new powershell file, for instance
called Data_to_XML.ps1, and save it into the powerJobs\Jobs folder.#Edit the
JobProcessor.exe.config to declare your new job. For queueing the job, you might use the
LifecycleEventEditor and configure your job on a given lifecycle change.if($vault -eq
$null){[System.reflection.Assembly]::LoadFrom($env:POWERJOBS_DLL)[coolOrange.PowerJobs.VaultProxy]::Login("Administrator","","localhost","Vault")$vault
= New-Object -type coolOrange.PowerJobs.VaultProxy}#Gets the file$fileID =
$vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }$file =
$vault.DocService.GetFileById($fileID)#Path where the .txt file and then the .xml file should be
placed$path = "C:\<YourFolder>\$($file.Name)"#Propertydefinitions$propDefs =
$vault.PropService.GetPropertyDefinitionsByEntityClassId("FILE")#Writes the
Propertydefinitionids in a System.Array to use a specific method$ids = @()foreach($f in
$propDefs){$ids+=$f.id}#Gets the file-properties$props =
$vault.PropService.GetProperties("FILE",@($file.Id),$ids)$values = @()$names = @()#Gets the
exact name and value of the propertiesfor($i = 0; $i -lt $propDefs.Count; $i+=1){for($j = 0; $j
-lt $props.Count; $j+=1){if($propDefs[$i].Id -eq $props[$j].PropDefId -and $props[$j].ValTyp
-ne "Image"){$values += $props[$j].Val$names += $propDefs[$i].DispName}}}#Writes the
properties first in a .txt-file#"root"-tag at the beginning and the end of the xml-file is
necessary"<root>"| Out-File "$($path).txt"for ($i = 0;$i -lt $props.Length-1; $i+=1){$xmltags =
"<$($names[$i])>$($values[$i])</$($names[$i])>"#The String have to be manipulated to make
a xml-file, because characters as space or parentheses are forbidden in tags$xmltags.Replace("
","").Replace("(","").Replace(")","") + "`n" | Out-File "$($path).txt" -Append}"</root>" | Out-File
"$($path).txt" -Append#Writes the .txt-file content into the xml-fileGet-Content "$($path).txt" |
Out-File "$($path).xml"#Remove the txt-fileRemove-Item "$($path).txt"

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/
Create_visible_or_invisible_attachments

Updated: Wed, 26 Feb 2014 10:18:54 GMT
Powered by 39

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Data_to_XML
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

40

PDF in an external folder
1. Overview

2. First Step

3. Second Step

4. Related

Overview
A frequent request is to create a PDF and make this accessible to other systems like an ERP. Now you
may know that a small script could grab the PDF from Vault and save it to the specified folder. However,
as the PDF gets created via a job, why not having the job save the PDF to that location, right during the
creation process.

First Step
By default the ' .PDF ' is created locally anyway, and uploaded to Vault later. We could grab the local file
and copy it to our desired location. The variable $localDestFile contains the location where the ' .PDF '
will be created.

Second Step
After the successful creation, let’s copy the file:

Copy-Item -LiteralPath $localDestFile -Destination "c:\myFolder\"+$PDFfileName

to Line 51 from coolOrange.powerJobs.CreatePdfAsAttachment.ps1

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/PDF_in_an_external_folder
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

41

Print via Inventor
1. Overview

2. Code

2.1. Related

Overview
In order to print a file via Inventor, a similar approach to the one for creating a DXF can be taken. In this
case we just open the file, catch the open event and then trigger the print. For printing, the
PrintManager from Inventor is used. This allows us to be quite flexible on the priting requirements. Here
is the code

Code
get the file$fileID = $vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }$file =
$vault.DocService.GetFileById($fileID)# get the latest version of the file in case a sync prop has
been executed bevore the job$file = $vault.DocService.GetLatestFileByMasterId($file.MasterId)#
limit publishing to 2d inventor files$ext =
[System.IO.Path]::GetExtension($file.Name)if($ext.ToLower().Equals(".idw")){
$publisher=$vault.GetPublisher("PDF") $publisher.add_OnBeginPublish({
param($publisher, $document) $printManager = $document.PrintManager
$printManager.GetType().InvokeMember("Printer",[Reflection.BindingFlags]::SetProperty, $null,
$printManager, "Microsoft XPS Document Writer") $printManager.ScaleMode =
[Inventor.PrintScaleModeEnum]::kPrintBestFitScale $printManager.PrintRange =
[Inventor.PrintRangeEnum]::kPrintAllSheets $printManager.PaperSize =
[Inventor.PaperSizeEnum]::kPaperSizeA0 $printManager.SubmitPrint() })
$publisher.OutputFile="c:\temp\dummy.pdf" if (!$publisher.Open($file.Id)) { throw
("Open failed") }}

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/PDF_in_an_external_folder
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

42

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Print_via_Inventor
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

43

Release via jobserver
1. Overview

2. Code 1

3. Code 2

3.1.

4. Code 3

5. Related

Overview
While releasing your document, some jobserver activities should be executed. To make sure that release
means also that the jobserver tasks were successfully done, it's a good idea to let the jobserver finally
release the document.

Code 1
If you want to change a filestate (Work in Progress,Released ...) from a masterfile you can use the follow
script:

#To test this script, just copy&paste the content above into a new powershell file, for instance
called ChangeState.ps1, and save it into the powerJobs folder.#Edit the JobProcessor.exe.config
to declare your new job. For queueing the job, you might use the LifecycleEventEditor and
configure your job on a given lifecycle change.#get the file via jobserver$fileID =
$vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }$file =
$vault.DocService.GetFileById($fileID)#All LifeCycleDefinitions get hooked, you need them to set
a filestate$def = $vault.DocExtService.GetAllLifeCycleDefinitions()#In this case we take the
"Flexible Release Process"$FlexibleReleaseProcess= $def | Where-Object
{$_.DispName.Equals("Flexible Release Process")}#From the "FlexibleReleaseProcess"-object you
can take your favorite state to set#in this case "Released"$releaseState =
$FlexibleReleaseProcess.StateArray | Where-Object {$_.Name.Equals("Released")}#The
masterfilestate gets changed to
"Released"$vault.DocExtService.UpdateFileLifeCycleStates(@($file.MasterId),@($releaseState.Id),"Released
from PS")

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Print_via_Inventor
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

44

Code 2
If you want to change filestates (Work in Progress,Released ...) from childfiles you can use this script:

#To test this script, just copy&paste the content above into a new powershell file, for instance
called ChangeState.ps1, and save it into the powerJobs folder.#Edit the JobProcessor.exe.config
to declare your new job. For queueing the job, you might use the LifecycleEventEditor and
configure your job on a given lifecycle change.#get the file via jobserver$fileID =
$vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }$file =
$vault.DocService.GetFileById($fileID)#Get all childfiles$assocs =
$vault.DocService.GetFileAssociationsByIds(@($file.id),[Autodesk.Connectivity.WebServices.FileAssociationTypeEnum]::None,$false,[Autodesk.Connectivity.WebServices.FileAssociationTypeEnum]::All,$true,$false,$false)if($assocs[0].FileAssocs
-ne $null){$stateIds = @()$childfileIds = @()foreach($f in $assocs[0].FileAssocs){$childfileIds
+= $f.CldFile.MasterId$stateIds += $releaseState.Id}}#The childfilesstates get changed to
"Released"$vault.DocExtService.UpdateFileLifeCycleStates($childfileIds,$stateIds,"Released from
PS")

Code 3
If you want to change a filecategory (Engineering,Base...) you can use this script:

#To test this script, just copy&paste the content above into a new powershell file, for instance
called ChangeCategory.ps1, and save it into the powerJobs folder.#Edit the
JobProcessor.exe.config to declare your new job. For queueing the job, you might use the
LifecycleEventEditor and configure your job on a given lifecycle change.#get the file via
jobserver$fileID = $vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }$file =
$vault.DocService.GetFileById($fileID)#All category-definitions get hooked$defc =
$vault.CatService.GetCategoriesByEntityClassId("FILE",$true)#In this case we want to set the
filecategory to "Engineering"$category = $defc | Where-Object
{$_.Name.Equals("Engineering")}#Change
Category$vault.DocExtService.UpdateFileCategories(@($file.MasterId),$category.Id,"Category
Change by PS")

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Release_via_jobserver
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

45

Retrieve the user that queued the job
1. Goal

1.1. Code

2. Related

Goal
Especially if a job has been queued via a lifecycle, you may want to know the user that queued that job

Code

#To test this script, just copy&paste the content above into a new powershell file, for instance
called retrieveUser.ps1#In the Vault jobqueue have to be some jobs, else you cant use the
script#this code is only for debug purpose within the powershell editor and will be ignored during
the regular job executionif($vault -eq
$null){[System.reflection.Assembly]::LoadFrom($env:POWERJOBS_DLL)[coolOrange.PowerJobs.VaultProxy]::Login("Administrator","","localhost","Vault")$vault
= New-Object -type coolOrange.PowerJobs.VaultProxy}#retrieve all jobs in the Vault
jobqueue$jobs = $vault.JobService.GetJobsByDate(1000,[DateTime]::MinValue)#select the job I
am (me)$currentJob = $jobs | Where-Object {$_.Id.Equals($vault.Job.Id)}#Gets user
informations from the Job-creator$userinfo =
$vault.AdmService.GetUserByUserId($currentJob.CreateUserId)#get the email address of the
user that queued the job$email = $userinfo.Email#place here you additional code#For instance,
send an E-Mail to the user

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/
Retrieve_the_user_that_queued_the_job

Updated: Wed, 26 Feb 2014 10:18:54 GMT
Powered by 46

Selected files to ZIP
1. Goal

2. Code

2.1. Related

Goal
Select files in Vault and let them zip together via jobserver. The resulting zip file could be sent via email,
stored into Vault, saved in a custom folder, uploaded somewhere, etc.

Code
#To test this script, just copy&paste the content above into a new powershell file, for instance
called FilesToZip.ps1, and save it into the powerJobs folder. #Edit the JobProcessor.exe.config to
declare your new job. For queueing the job, you might use the LifecycleEventEditor and configure
your job on a given lifecycle change.if(!$IAmRunningInJobProcessor) { Import-Module
"$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"
[System.reflection.Assembly]::LoadFrom($env:POWERJOBS_DLL) $vault = New-Object -type
coolOrange.PowerJobs.VaultProxy $vault.Login("Administrator","","localhost","Vault") # get
the file $file = $vault.GetUniqueLatestFileByFilename("Catch Assembly.idw") if(!$file) { throw
("File cannot be found") }}else{ # get the file $fileID = $vault.Job.Params["FileId"]
if(!$fileID) { throw ("File ID not set") } $file = $vault.DocService.GetFileById($fileID)} #Path
for the download-files $filesPath = "C:\<YourFolder>\<YourDownloadFolder>\" #It creates a
new folder even though it exist New-Item -Path $filesPath -Force -ItemType Directory
#Download masterfile from Vault $buffer = New-Object -type
Autodesk.Connectivity.WebServices.ByteArray $test =
$vault.DocService.DownloadFile($file.Id,$true,[ref]$buffer)
System.Io.File]::WriteAllBytes("$filesPath$($file.Name)", $buffer.Bytes) #Load the libraries, to
use specific functions [System.Reflection.Assembly]::LoadFrom("C:\Program Files
(x86)\Autodesk\Autodesk Vault 2013 SDK\bin\Autodesk.Connectivity.WebServices.dll")
[System.Reflection.Assembly]::LoadFrom("C:\Program Files (x86)\Autodesk\Autodesk Vault 2013
SDK\bin\Autodesk.Connectivity.JobProcessor.Extensibility.dll") #Download childfiles from
Vault $assocs =
$vault.DocService.GetFileAssociationsByIds(@($file.id),[Autodesk.Connectivity.WebServices.FileAssociationTypeEnum]::None,$false,[Autodesk.Connectivity.WebServices.FileAssociationTypeEnum]::All,$true,$false,$false)
if($assocs[0].FileAssocs -ne $null){ foreach($f in $assocs[0].FileAssocs){ #Empty

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/
Retrieve_the_user_that_queued_the_job

Updated: Wed, 26 Feb 2014 10:18:54 GMT
Powered by 47

buffer $buffer = New-Object -type Autodesk.Connectivity.WebServices.ByteArray
$vault.DocService.DownloadFile($f.CldFile.Id,$true,[ref]$buffer)
[System.Io.File]::WriteAllBytes("$filesPath$($f.CldFile.Name)", $buffer.Bytes) } }
#Create Zip-File $zipFileName = "C:\<YourFolder>\$($file.Name).zip" set-content
$zipFileName ("PK" + [char]5 + [char]6 + ("$([char]0)" * 18)) $ZipFile = (new-object -com
shell.application).NameSpace($zipFileName) $fileToBeZipped = Get-ChildItem $filesPath
$fileToBeZipped | ForEach-Object { #The method .MoveHere() is running asynchronous, so we
have to wait a few seconds before moving the next file into zip #In this case: 2 seconds
Start-Sleep -Seconds 2 #Write files into the zipfile $ZipFile.MoveHere($_.FullName,1024) }

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Selected_files_to_ZIP
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

48

Send email via jobserver
1. Overview

2. Code

3. Notification via Email

3.1. Related

Overview
sending an email at the end of a job is quite simple. The powershell language provides a ready to use
command-let called send-mailmessage.

Code
To test this script, just copy&paste the content above into a new powershell file, for instance called
sendMail.ps1, and save it into the powerJobs folder. Edit the JobProcessor.exe.config to declare your new
job. For queueing the job, you might use the LifecycleEventEditor and configure your job on a given
lifecycle change.

$fileID = $vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }$file =
$vault.DocService.GetFileById($fileID)#write here the actions that should be done before the
email should be sentSend-MailMessage -To "user@yourdomain.com" -From
"powerJobs@yourdomain.com" -Subject "The document $($file.Name) has been processed" -Body
"Write here your email text and use variables to add additional information" -SmtpServer
"yourSMTPserver"#write here the actions that should be done after the email has been sent

if you need to pass credentials to your SMTP server, just add the 2 lines below and add the Credential
option to the send-mailmessage comandlet

$passwd = ConvertTo-SecureString -AsPlainText "yourPassword" -Force$cred = new-object
Management.Automation.PSCredential "yourUser", $passwdSend-MailMessage -To
"user@yourdomain.com" -From "powerJobs@yourdomain.com" -Subject "The document

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Selected_files_to_ZIP
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

49

$($file.Name) has been processed" -Body "Write here your email text and use variables to add
additional information" -SmtpServer "yourSMTPserver" -Credential $cred

if you want to add an attachment to your email, this sample downloads the file from Vault and attached
it to the mail

$fileContent = @()$vault.DocService.DownloadFile($file.Id, $true, [ref]$fileContent)$fileName =
"c:\temp\$($file.Name)"set-content -value $fileContent -encoding byte -path
$fileNameSend-MailMessage -To "user@yourdomain.com" -From "powerJobs@yourdomain.com"
-Subject "The document $($file.Name) has been processed" -Body "Write here your email text
and use variables to add additional information" -SmtpServer "yourSMTPserver" -Attachments
$fileName

Notification via Email
In order to send emails, you need a SMTP server. So, we assume this is given and you have the
credentials. Then, it’s an easy game. PowerShell comes with a commandlet called Send-MailMessage.
Just add the given arguments like from, to, subject, body and a valid SMTP server, and you have emails
sent by the Jobserver at lifecycle transitions. The content of the email can be configured as needed. Here
a sample that sends an email with the file name with from and to state in the subject, and a Vault link in
the body. If the user clicks on the link, Vault will start and point to the according file.

$lfcTransId = $vault.Job.Params["LifeCycleTransitionId"]$fileID = $vault.Job.Params["FileId"]$file
= $vault.DocService.GetFileById($fileID)$folders =
$vault.DocService.GetFoldersByFileMasterId($file.MasterId)$folder = $folders[0]$folderPath =
$folder.FullName$folderPath = $folderPath.Replace("$","%24").Replace("/","%2f")$fullPath =
$folderPath + "%2f" + $file.Name.Replace(" ","+")$link = "http://localhost/AutodeskDM/Services/
EntityDataCommandRequest.aspx?Vault=Vault&ObjectId="+$fullPath+"&ObjectType=File&Command=Select"$lfcTrans
=$vault.DocExtService.GetLifeCycleStateTransitionsByIds(@($lfcTransId))$lfcs =
$vault.DocExtService.GetLifeCycleStatesByIds(@($lfcTrans[0].FromId,$lfcTrans[0].ToId))$oldState
= $lfcs[0].DispName$newState = $lfcs[1].DispNameSend-MailMessage -From
"marco.mirandola@coolorange.com" -To "marco.mirandola@coolorange.com" -Subject "The file
$($file.Name) has changed from $oldState to $newState" -Body "Dear xxx, if you like to view the
related document, just follow this link: $link" -SmtpServer 10.0.0.18

Related
• 2013

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Send_email_via_jobserver
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

50

Create .csv from BOM
1. Overview

2. Code

2.1. Related

Overview
!!! Not updated for 2014 yet !!!

This tutorial gives you an example for creating a csv-file from the BOM via Powershell

Code

#To test this script, just copy&paste the content above into a new powershell file, for instance
called BOM_to_Excel.ps1, and save it into the powerJobs folder. #Edit the
JobProcessor.exe.config to declare your new job. For queueing the job, you might use the
LifecycleEventEditor and configure your job on a given lifecycle
change.if(!$IAmRunningInJobProcessor){ Import-Module
"$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"
[System.reflection.Assembly]::LoadFrom($env:POWERJOBS_DLL) $vault = New-Object -type
coolOrange.PowerJobs.VaultProxy $vault.Login("Administrator","","localhost","Vault") # get
the file $file = $vault.GetUniqueLatestFileByFilename("Pad Lock.iam") if(!$file) { throw ("File
cannot be found") }}else{ # get the file $fileID = $vault.Job.Params["FileId"] if(!$fileID) {
throw ("File ID not set") } $file = $vault.DocService.GetFileById($fileID)}#gets the items with
the file-id $items = $vault.ItmService.GetItemsByFileId($file.Id)#the item-masterid which you
need to get the bom$itemMaster = $items[0]if (!$items) {throw ("File has no item")}#Library to
use specific functions[System.Reflection.Assembly]::LoadFrom("C:\Program Files
(x86)\Autodesk\Autodesk Vault 2013 SDK\bin\Autodesk.Connectivity.WebServices.dll")#Gets the
BOM-file frome the vault$itemBOM =
$vault.ItmService.GetItemBOMByItemIdAndDate($itemMaster.Id,[System.DateTime]::MinValue,[Autodesk.Connectivity.WebServices.BOMTyp]::Tip,[Autodesk.Connectivity.WebServices.BOMViewEditOptions]::ReturnOccurrences)#different

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2013/Send_email_via_jobserver
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

51

variables to get specific BOM informations$boms = $itemBOM.ItemRevArray $bomsOcc =
$itemBOM.OccurArray $bomsAss = $itemBOM.ItemAssocArray#Gets LifeCyleStates of the
items$DispName = @{}$defs = $vault.ItmService.GetAllLifeCycleDefinitions()foreach($def in
$defs){ $DispName[$def.Id]=$def.DispName}#Gets the Quantity of the items$quantity =
@()for($i = 0;$i -lt $boms.Count;$i+=1){ for($j = 0;$j -lt $bomsAss.Count;$j+=1){
if($boms[$i].MasterID -eq $bomsAss[$j].CldItemMasterID){ $quantity +=
$bomsAss[$j].CldItemUsage } }}#Write here the path where the csv-file should be
placed$FilePath = "C:\<YourFolder>\BOM$($file.Name).csv"#Writes with the PS function
"out-file" the column names into
.csv-file"Number`tDetail_ID`tQuantity`tTitle`tRevision`tState`tUnits`n"|out-file
$FilePath#Writes with the PS function "out-file" the informations into .csv-file for($i = 0;$i -lt
$boms.Count;$i+=1){
"$($boms[$i].ItemNum)`t$($bomsOcc[$i].Val)`t$($quantity[$i])`t$($boms[$i].Title)`t$($boms[$i].RevNum)`t$($DispName[$boms[$i].LfCycStateId])`t$($boms[$i].Units)"|
out-file $FilePath -Append }

Related
• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Create_.csv_from_BOM
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

52

Create DWG from an IDW
1. Overview

1.1. Code

2. Related

Overview
As DWG is quite popular, you might want to create a DWG from an IDW via jobserver.

At line 20 you can change it also to other formats (.stp,...) that you want to create.

Code

Import-Module "$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"$file
= PrepareEnvironmentForFile "Assembly1.idw" $true$powerJobs.Log.Info("Starting job 'Create
DWG' ...")# limit publishing to idw files$ext =
[System.IO.Path]::GetExtension($file.EntityName).ToLower()$inventorExtensions =
@(".idw")if($inventorExtensions -contains $ext){ # publish (generate the dwfx attachment)
$localDestFile = "C:\TEMP\" + $file.EntityName + ".dwg"
$publisher=$powerJobs.GetPublisher("PDF") $publisher.OutputFile=$localDestFile
#Eventhandler in which you can create other file formats $publisher.add_OnBeginPublish(
{ param($publisher, $document) $document.Document.SaveAs($localDestFile,$true)
}) #The Eventhandler gets called if(!$publisher.Open($File.EntityIterationId)) {throw
"The .dwg-translation failed!"}}

Related
• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Create_DWG_from_an_IDW
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

53

Create textfile via template
1. Overview

2. Goal

2.1. First Step

2.2. Example with an Assembly1.idw file:

3. Related

Overview
Explains how to complete a self-paced learning exercise using a feature in the product.

Goal
Supposing you have to write out several information into a file, and you like to keep the file format
flexible, the idea could be to use a template file to drive the format.

Steps

First Step

To use the script, create a file called "template.txt" (use the exact path in the script). Then open the
"template.txt" and write the property names from which you might write informations out into a file. Use
this Syntax: the propertynames have to be written in "{...}", the properties gets seperated by ";".
Example: {Name};This is my Classification: {Classification};It got created by: {Created By};. The
format is flexible. You can also define a html-page: <html><table
border="1"><tr><td>{Name};</td><td>{Classification};</td><td>{Created
By}</td></tr></table></html>

Import-Module "$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"$file
= PrepareEnvironmentForFile "Assembly1.idw" $true$powerJobs.Log.Info("Starting job
'Create_txt' ...")#Paths:#TEMPLATE-PATH$pathTemp = "C:\template.txt"$FilePath =

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Create_DWG_from_an_IDW
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

54

"C:\file.txt"#Propertydefinitions$propDefs =
$vault.PropertyService.GetPropertyDefinitionsByEntityClassId("FILE")#Writes the
Propertydefinitionids in a System.Array to use a specific method$ids = @()foreach($f in
$propDefs){ $ids+=$f.Id}#gets the file-properties$props =
$vault.PropertyService.GetProperties($file.EntityClass.Id,@($file.EntityIterationId),$ids)#Define
RegularExpression, to get the propertynames from the template-file$regex =
[regex]"\{+(?i)\b[A-Z\s]+\b\}"$template = Get-Content -Path $pathTemp$header =
$regex.Matches($template)#Get the valuesforeach($match in $header){ $literalFieldName =
$match.Value.TrimStart("{").TrimEnd("}") $propId = 0 foreach($pd in $propDefs) {
if($pd.DispName.Equals($literalFieldName)) { $propId=$pd.Id } }
if($propId -gt 0) { foreach($pi in $props) {
if($pi.PropDefId.Equals($propId)) { $template = $template -replace
$match.Value, $pi.Val } } }}#Writes the values in a file$template |Out-File
$FilePath -Append

Example with an Assembly1.idw file:

template.txt:
{Name};This is my Classification: {Classification};It got created by: {Created By};

My output file: file.txt:
Assembly1.idw;This is my Classification: Design Document;It got created by: Administrator;

Related
• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Create_textfile_via_template
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

55

Data to XML
1. Overview

2. Code

2.1. Related

Overview
You may want to export information from Vault into an XML file.

Code
#To test this script, just copy&paste the content above into a new powershell file, for instance
called Data_to_XML.ps1, and save it into the powerJobs\Jobs folder.#Edit the
JobProcessor.exe.config to declare your new job. For queueing the job, you might use the
LifecycleEventEditor and configure your job on a given lifecycle change.Import-Module
"$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"$file =
PrepareEnvironmentForFile "Assembly1.idw" $true$powerJobs.Log.Info("Starting job 'Create_xml'
...")#Path where the .txt file and then the .xml file should be placed$path =
"C:\$($file.EntityName)"#Propertydefinitions$propDefs =
$vault.PropertyService.GetPropertyDefinitionsByEntityClassId($file.EntityClass.Id)#Writes the
Propertydefinitionids in a System.Array to use a specific method$ids = @()foreach($f in
$propDefs){ $ids+=$f.id}#Gets the file-properties$props =
$vault.PropertyService.GetProperties("FILE",@($file.EntityIterationId),$ids)$values = @()$names
= @()#Gets the exact name and value of the propertiesfor($i = 0; $i -lt $propDefs.Count;
$i+=1){ for($j = 0; $j -lt $props.Count; $j+=1){ if($propDefs[$i].Id -eq
$props[$j].PropDefId -and $props[$j].ValTyp -ne "Image"){ $values +=
$props[$j].Val $names += $propDefs[$i].DispName } }}#Writes the properties
first in a .txt-file#"root"-tag at the beginning and the end of the xml-file is necessary"<root>"|
Out-File "$($path).txt"for ($i = 0;$i -lt $props.Length-1; $i+=1){ $xmltags =
"<$($names[$i])>$($values[$i])</$($names[$i])>" #The String have to be manipulated to
make a xml-file, because characters as space or parentheses are forbidden in tags
$xmltags.Replace(" ","").Replace("(","").Replace(")","") + "`n" | Out-File "$($path).txt"
-Append}"</root>" | Out-File "$($path).txt" -Append#Writes the .txt-file content into the
xml-fileGet-Content "$($path).txt" | Out-File "$($path).xml"#Remove the txt-fileRemove-Item
"$($path).txt"

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Create_textfile_via_template
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

56

Related
• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Data_to_XML
Updated: Wed, 26 Feb 2014 10:18:54 GMT

Powered by

57

PDF in an external folder
1. Overview

2. First Step

3. Second Step

4. Related

Overview
A frequent request is to create a PDF and make this accessible to other systems like an ERP. Now you
may know that a small script could grab the PDF from Vault and save it to the specified folder. However,
as the PDF gets created via a job, why not having the job save the PDF to that location, right during the
creation process.

First Step
By default the ' .PDF ' is created locally anyway, and uploaded to Vault later. We could grab the local file
and copy it to our desired location. The variable $localDestFile contains the location where the ' .PDF '
will be created.

Second Step
After the successful creation, let’s copy the file:

Copy-Item -LiteralPath $localDestFile -Destination "C:\myFolder\$($PDFfileName)"

to Line 38 from coolOrange.powerJobs.CreatePdfAsAttachment.ps1

Related
• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/PDF_in_an_external_folder
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

58

Print via Inventor
1. Overview

2. Code

2.1. Related

Overview
!!! Not updated for 2014 yet !!!

In order to print a file via Inventor, a similar approach to the one for creating a DXF can be taken. In this
case we just open the file, catch the open event and then trigger the print. For printing, the
PrintManager from Inventor is used. This allows us to be quite flexible on the priting requirements. Here
is the code

Code
get the file$fileID = $vault.Job.Params["FileId"]if(!$fileID) { throw ("File ID not set") }$file =
$vault.DocService.GetFileById($fileID)# get the latest version of the file in case a sync prop has
been executed bevore the job$file = $vault.DocService.GetLatestFileByMasterId($file.MasterId)#
limit publishing to 2d inventor files$ext =
[System.IO.Path]::GetExtension($file.Name)if($ext.ToLower().Equals(".idw")){
$publisher=$vault.GetPublisher("PDF") $publisher.add_OnBeginPublish({
param($publisher, $document) $printManager = $document.PrintManager
$printManager.GetType().InvokeMember("Printer",[Reflection.BindingFlags]::SetProperty, $null,
$printManager, "Microsoft XPS Document Writer") $printManager.ScaleMode =
[Inventor.PrintScaleModeEnum]::kPrintBestFitScale $printManager.PrintRange =
[Inventor.PrintRangeEnum]::kPrintAllSheets $printManager.PaperSize =
[Inventor.PaperSizeEnum]::kPaperSizeA0 $printManager.SubmitPrint() })
$publisher.OutputFile="c:\temp\dummy.pdf" if (!$publisher.Open($file.Id)) { throw
("Open failed") }}

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/PDF_in_an_external_folder
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

59

Related
• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Print_via_Inventor
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

60

Release via jobserver
1. Overview

2. INFO

3. Code 1

4. Code 2

5. Code 3

6. Related

Overview
While releasing your document, some jobserver activities should be executed. To make sure that release
means also that the jobserver tasks were successfully done, it's a good idea to let the jobserver finally
release the document.

INFO
In order to change states via the api, you have to be able to change them via the gui as well. Otherwise

it won´t work.

Code 1
If you want to change a filestate (Work in Progress,Released ...) from a masterfile you can use the follow
script:

Import-Module "$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"$file
= PrepareEnvironmentForFile "Part2.ipt" $true$powerJobs.Log.Info("Starting job 'Release_File'
...")#Path where the .txt file and then the .xml file should be placed$path =
"C:\$($file.EntityName)"#All LifeCycleDefinitions get hooked, you need them to set a filestate$def
= $vault.DocumentServiceExtensions.GetAllLifeCycleDefinitions()#In this case we take the
"Flexible Release Process"$FlexibleReleaseProcess = $def | Where-Object
{$_.DispName.Equals("Flexible Release Process")}#From the "FlexibleReleaseProcess"-object you

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Print_via_Inventor
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

61

can take your favorite state to set#in this case "Released"$releaseState =
$FlexibleReleaseProcess.StateArray | Where-Object {$_.Name.Equals("Released")}#The
masterfilestate gets changed to
"Released"$vault.DocumentServiceExtensions.UpdateFileLifeCycleStates(@($file.EntityMasterId),@($releaseState.Id),"Released
from PS")

Code 2
If you want to change filestates (Work in Progress,Released ...) from childfiles you can use this script:

#To test this script, just copy&paste the content above into a new powershell file, for instance
called ChangeState.ps1, and save it into the powerJobs folder.#Edit the JobProcessor.exe.config
to declare your new job. For queueing the job, you might use the LifecycleEventEditor and
configure your job on a given lifecycle change.Import-Module
"$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"$file =
PrepareEnvironmentForFile "Assembly1.iam" $true$powerJobs.Log.Info("Starting job
'change_state_child' ...")#All LifeCycleDefinitions get hooked, you need them to set a
filestate$def = $vault.DocumentServiceExtensions.GetAllLifeCycleDefinitions()#In this case we
take the "Flexible Release Process"$FlexibleReleaseProcess = $def | Where-Object
{$_.DispName.Equals("Flexible Release Process")}#From the "FlexibleReleaseProcess"-object you
can take your favorite state to set$releaseState = $FlexibleReleaseProcess.StateArray |
Where-Object {$_.Name.Equals("Released")}#Get all childfiles$assocs =
$vault.DocumentService.GetFileAssociationsByIds(@($file.EntityIterationId),[Autodesk.Connectivity.WebServices.FileAssociationTypeEnum]::None,$false,[Autodesk.Connectivity.WebServices.FileAssociationTypeEnum]::All,$true,$false,$false)if($assocs[0].FileAssocs
-ne $null){ $stateIds = @() $childfileIds = @() foreach($f in $assocs[0].FileAssocs){
$childfileIds += $f.CldFile.MasterId $stateIds += $releaseState.Id }}#The childfilesstates
get changed to
"Released"$vault.DocumentServiceExtensions.UpdateFileLifeCycleStates($childfileIds,$stateIds,"Released
from PS")

Code 3
If you want to change a filecategory (Engineering,Base...) you can use this script:

Import-Module "$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"$file
= PrepareEnvironmentForFile "Part2.ipt.pdf" $true$powerJobs.Log.Info("Starting job
'change_category' ...")#All category-definitions get hooked$defc =
$vault.CategoryService.GetCategoriesByEntityClassId("FILE",$true)#In this case we want to set
the filecategory to "Engineering"$category = $defc | Where-Object
{$_.Name.Equals("Engineering")}#Change
Category$vault.DocumentServiceExtensions.UpdateFileCategories(@($file.EntityMasterId),$category.Id,"Category
Change by PS")

Related
• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Release_via_jobserver
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

62

Retrieve the user that queued the job
1. Goal

2. Info

3. Code

4. Related

Goal
Especially if a job has been queued via a lifecycle, you may want to know the user that queued that job

Info
If you have trouble debugging the job, then execute it via the jobserver. To test the script you can add
the code on line 25 of our 'Create PDF' - job and make a pdf after saving it. As a result you should get a
textfile C:\usertest.txt with the information of the user, which executed the job.

Code
#retrieve all jobs in the Vault jobqueue$jobs =
$vault.JobService.GetJobsByDate(1000,[DateTime]::MinValue)#select the job I am
(me)$currentJob = $jobs | Where-Object {$_.Id.Equals($powerJobs.Job.Id)}#Gets user
informations from the Job-creator$userinfo =
$vault.AdminService.GetUserByUserId($currentJob.CreateUserId)#get the email address of the
user that queued the job$email = $userinfo.Email#place here you additional code#For instance,
send an E-Mail to the user#The following code writes the userdata in a textfile.$userinfo >>
'C:\usertest.txt'

Related
• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/
Retrieve_the_user_that_queued_the_job

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 63

Selected files to ZIP
1. Goal

2. Code

2.1. Related

Goal
Select files in Vault and let them zip together via jobserver. The resulting zip file could be sent via email,
stored into Vault, saved in a custom folder, uploaded somewhere, etc.

Code
#To test this script, just copy&paste the content above into a new powershell file, for instance
called FilesToZip.ps1, and save it into the powerJobs folder. #Edit the JobProcessor.exe.config to
declare your new job. For queueing the job, you might use the LifecycleEventEditor and configure
your job on a given lifecycle change.Import-Module
"$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"$file =
PrepareEnvironmentForFile "Assembly1.idw" $true$powerJobs.Log.Info("Starting job
'Zip_Structure' ...")#Path for the final zipfile$zipout = "C:\myZips\"#region
DownloadSettings#Generate a Settingsobject. It is necessary for the new AcquireFiles
method$settings = New-Object
Autodesk.DataManagement.Client.Framework.Vault.Settings.AcquireFilesSettings($vaultconnection,
$false)$settings.AddEntityToAcquire($file)#Temporary path for the downloaded
files$settings.set_LocalPath("C:\TEMP\zip")#"Checkout", "Download", "NoAction"are possible
values$settings.set_DefaultAcquisitionOption("Download")#What should be included in the
zip?$settings.OptionsRelationshipGathering.FileRelationshipSettings.set_IncludeChildren("TRUE")$settings.OptionsRelationshipGathering.FileRelationshipSettings.set_RecurseChildren("TRUE")$settings.OptionsRelationshipGathering.FileRelationshipSettings.set_IncludeAttachments("TRUE")#endregion#Downloading
the files$files = $vaultConnection.FileManager.AcquireFiles($settings)#It creates a new folder
even though it existNew-Item -Path $settings.get_LocalPath() -Force -ItemType
DirectoryNew-Item -Path $zipout -Force -ItemType Directory#Create Zip-File$zipFileName =
"$($zipout)$($file.EntityName).zip"set-content $zipFileName ("PK" + [char]5 + [char]6 +
("$([char]0)" * 18))$ZipFile = (new-object -com
shell.application).NameSpace($zipFileName)$fileToBeZipped = Get-ChildItem
$settings.get_LocalPath()$fileToBeZipped | ForEach-Object { #The method .MoveHere() is
running asynchronous, so we have to wait a few seconds before moving the next file into zip

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/
Retrieve_the_user_that_queued_the_job

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 64

#In this case: 2 seconds Start-Sleep -Seconds 2 #Write files into the zipfile
$ZipFile.MoveHere($_.FullName,1024)}

Related

• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Selected_files_to_ZIP
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

65

Send email via jobserver
1. Overview

2. Code

3. Notification via Email

4. To address from Vault property

4.1. Related

Overview
sending an email at the end of a job is quite simple. The powershell language provides a ready to use
command-let called send-mailmessage.

Code
To test this script, just copy&paste the content above into a new powershell file, for instance called
sendMail.ps1, and save it into the powerJobs folder. Edit the JobProcessor.exe.config to declare your new
job. For queueing the job, you might use the LifecycleEventEditor and configure your job on a given
lifecycle change.

Import-Module "$env:POWERJOBS_MODULESDIR\coolOrange.PowerJobs.VaultHelper.psm1"$file
= PrepareEnvironmentForFile "Part2.ipt" $true$powerJobs.Log.Info("Starting job 'send_email'
...")#region Config Mail $from = "powerjobs@yourdomain.com" #Required $to =
"user@targetdomain.com" #Required $subject = "The document $($file.EntityName) has been
processed" #Required $body = "Write here your email text and use variables to add additional
information" #Optional#endregion#region Config SMTP $smtp = "yourSMTPServer" $passwd
= ConvertTo-SecureString -AsPlainText "YourPassword" -Force $cred = new-object
Management.Automation.PSCredential $from, $passwd#endregion#region Config Attatchment
$sendattatchment = $true#endregion#region Send Message if($sendattatchment -eq
$true){ Send-MailMessage -To $to -From $from -Subject $subject -Body $body -SmtpServer
$smtp -Credential $cred -Attachments "C:\TEMP\$($file.EntityName)" } else{
Send-MailMessage -To $to -From $from -Subject $subject -Body $body -SmtpServer $smtp
-Credential $cred }#endregion

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Selected_files_to_ZIP
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

66

Notification via Email
!!! Not updated for 2014 yet !!!

In order to send emails, you need a SMTP server. So, we assume this is given and you have the
credentials. Then, it’s an easy game. PowerShell comes with a commandlet called Send-MailMessage.
Just add the given arguments like from, to, subject, body and a valid SMTP server, and you have emails
sent by the Jobserver at lifecycle transitions. The content of the email can be configured as needed. Here
a sample that sends an email with the file name with from and to state in the subject, and a Vault link in
the body. If the user clicks on the link, Vault will start and point to the according file.

$lfcTransId = $vault.Job.Params["LifeCycleTransitionId"]$fileID = $vault.Job.Params["FileId"]$file
= $vault.DocService.GetFileById($fileID)$folders =
$vault.DocService.GetFoldersByFileMasterId($file.MasterId)$folder = $folders[0]$folderPath =
$folder.FullName$folderPath = $folderPath.Replace("$","%24").Replace("/","%2f")$fullPath =
$folderPath + "%2f" + $file.Name.Replace(" ","+")$link = "http://localhost/AutodeskDM/Services/
EntityDataCommandRequest.aspx?Vault=Vault&ObjectId="+$fullPath+"&ObjectType=File&Command=Select"$lfcTrans
=$vault.DocExtService.GetLifeCycleStateTransitionsByIds(@($lfcTransId))$lfcs =
$vault.DocExtService.GetLifeCycleStatesByIds(@($lfcTrans[0].FromId,$lfcTrans[0].ToId))$oldState
= $lfcs[0].DispName$newState = $lfcs[1].DispNameSend-MailMessage -From
"marco.mirandola@coolorange.com" -To "marco.mirandola@coolorange.com" -Subject "The file
$($file.Name) has changed from $oldState to $newState" -Body "Dear xxx, if you like to view the
related document, just follow this link: $link" -SmtpServer 10.0.0.18

To address from Vault property
In case you like to send the email to persons in a more dynamic way, and let's suppose that you have
the email address of the person stored in a user defined property, here are some more rows that might
help you to retrieve the email address.

$propDefs =
$vault.PropertyService.GetPropertyDefinitionsByEntityClassId($file.EntityClass.Id)$propDef =
$propDefs | Where-Object { $_.DispName -eq "SendTo" }$prop =
$vault.PropertyService.GetProperties($file.EntityClass.Id,@($file.EntityIterationId),@($propDef.Id))$emailTo
= $prop[0].Val

So, the first line pulls all the property definitions from Vault. The second filters all the property
definitions for the one property you are looking for, so change the "SendTo" string to the name of the
property you are looking for. The third line pulls the value for our file for the specified property. And
finally the last line just stores the value from the first property into the variable $emailTo, which you can
now use with your Send-MailMessage command.

Related
• 2014

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/2014/Send_email_via_jobserver
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

67

Copy file in a directory
1. Overview

2. Goal

2.1. Code

3. Related

Overview
Gives you an idea to solve this problems with powershell

Goal
copy a file in a directory and create the directory if it does not exist

Steps

Code

#Path to file$sourceFile = "C:\<YourFolder>\<YourFile>"#Path to your directory, if it doesnt
exist, it creates a new one$targetDirectory = "C:\<YourFolder>"#Test if path is
existingif(!(Test-Path $targetDirectory)){mkdir $targetDirectory}#file get copyed to
directoryCopy-Item -Path $sourceFile -Destination $targetDirectory#The Copy-Item cmdlet
contains a lot more intresting options, for instance -Force#to force overwriting, or -Recurse to
copy a complete folderstructure

Related
• powershell general

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general/
Copy_file_in_a_directory

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 68

Insert into SQL server
1. Goal

1.1. First Step

1.2. Second Step

2. What's Next

3. Related

Goal
Supposing you like insert some rows into an SQL server, powershell can help you. This could be useful to
inform a foreign System about some changes in Vault, or fill tables with data for further use, or make
data available to other applications, etc.

Steps

First Step

Prerequisits for the example below

• You need a SQL Server named MySQLServer

• You should be able to connect to it via integrated security

• The server should have a Database called TestDB

• TestDB should contain a Table called Table1 with columns matching the insert statement below

Second Step

#create connection object$conn = New-Object System.Data.SqlClient.SqlConnection("Data
Source=MySQLServer; Initial Catalog=TestDB; Integrated Security=SSPI")#open database
connection$conn.Open()#get a command object$cmd = $conn.CreateCommand()#define the

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general/
Copy_file_in_a_directory

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 69

insert statement$cmd.CommandText ="INSERT INTO Table1 VALUES ('testtext1', 'testtext2',
123)"#execute the command$cmd.ExecuteNonQuery()#cleanup$cmd.Dispose()#close the
connection$conn.Close()#cleanup$conn.Dispose()

What's Next
This is what was achieved and what was omitted in this tutorial.

Related
• powershell general

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general/
Insert_into_SQL_server

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 70

Print/convert Office documents
1. Overview

2. Prerequisites

2.1. Word

2.2. Excel

3. Powerpoint

4. Related

Overview
You may want to print or convert Office documents, to a PDF file.

Prerequisites
You need to have Microsoft Office 2010 or higher installed

Word

You may want to print or convert Office documents, like Word , to a PDF file.

$word = New-Object -ComObject Word.ApplicationSleep -Seconds 10$process = Get-Process
winword -ErrorAction SilentlyContinue$word.Visible = $false$doc =
"C:\Temp\Document.docx"$saveaspath = "C:\Temp\Document.pdf"#to fix language pack
problems$ci = [System.Globalization.CultureInfo]'en-US'#Opens the wordfile to save as
pdf-file$openDoc = $word.documents.PSBase.GetType().InvokeMember('Open',
[Reflection.BindingFlags]::InvokeMethod, $null,$word.documents,$doc, $ci)#Creates the
pdf-file$openDoc.ExportAsFixedFormat($saveaspath ,
[Microsoft.Office.Interop.Word.WdExportFormat]::wdExportFormatPDF)$openDoc.Close()$word.Quit()

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general/
Insert_into_SQL_server

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 71

Excel

You may want to print or convert Excel documents, to a PDF file.

#Creates a Excel-Object$excel = New-Object -ComObject Excel.Application$excel.Visible =
$false$formatPDF = 17$saveaspath = "C:\TEMP\WorkBook.pdf"$workbook =
$excel.Workbooks.Open("C:\TEMP\WorkBook.xlsx")#Creates the
pdf-file$workbook.SaveAs($saveaspath ,$formatPDF)$workbook.Close()$excel.Quit()

Powerpoint
You may want to print or convert Powerpoint documents, to a PDF file.

$powerpnt = New-Object -ComObject PowerPoint.Application$doc =
"C:\Temp\Presentation.pptx"$saveaspath = "C:\Temp\Presentation.pdf"$openDoc =
$powerpnt.Presentations.PSBase.GetType().InvokeMember('Open',[Reflection.BindingFlags]::InvokeMethod,$null,$powerpnt.Presentations,$doc,
$ci)$openDoc.SaveAs($saveaspath ,
[Microsoft.Office.Interop.PowerPoint.PpSaveAsFileType]::ppSaveAsPDF,[Microsoft.Office.Core.MsoTriState]::msoFalse)$openDoc.Close()

This is what was achieved and what was omitted in this tutorial.

Related
• powershell general

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general/
Print%2F%2Fconvert_Office_documents

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 72

Set default printer
1. Goal

1.1. Code

1.2. Related

Goal
Setting the default printer might help you to print documents on the device you want, also with
applications that have a poor API to control the printer.

Code

#get default printer$olddefaultprinter=Get-WmiObject -Class Win32_Printer -Filter
"Default=True"#set new default printer$newdefaultprinter=Get-WmiObject -Class Win32_Printer
-Filter "DeviceID='Printername'"$newdefaultprinter.SetDefaultPrinter()#write here the actions to
be done with new default printer#set old default printer, if
needed$olddefaultprinter.SetDefaultPrinter()

Related
• powershell general

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general/
Set_default_printer

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 73

Simple document print on default printer
1. Overview

2. Code

3. Related

Overview
How to simply print a document on the default printer.

Code
#Write here the file-path$document = "C:\<YourFolder>\<YourFile>"#Prints the document
content and waits until the process endsStart-Process -FilePath $document -Verb Print -Wait

Related
• powershell general

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general/
Simple_document_print_on_default_printer
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by 74

07. Patchnotes
1. Overview

2. powerJobs 2014

3. powerJobs 2013

4. Related

Overview
The following lists contain all relased versions of powerJobs including a description of the relevant
changes for each version.

powerJobs 2014

Date Version Description

24.09.2013 14.0.136 fixed bug multisheet for pdf
creation of inventor drawings

14.0.130

powerJobs 2013

Date Version Description

24.09.2013 13.0.129
fixed bug multisheet of pdf
creation with inventor 2013 in
designdrawgins

http://wiki.coolorange.com/powerJobs/06._Customization/Code_snippets/powershell_general/
Simple_document_print_on_default_printer
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by 75

Date Version Description

13.0.128

Related
• powerJobs

http://wiki.coolorange.com/powerJobs/07._Patchnotes
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

76

http://wiki.coolorange.com/powerJobs

08. Troubleshooting
1. Overview

2. Log4Net

2.1. Logginglevel

2.2. Errorlog Paths

2.3. When to use this feature?

3. You get an error that some ddls cannot be found, while debugging in Powergui

4. Your jobserver hangs if you try to make PDFs or stops with an error

5. Related

Overview
This page contains information about how to handle some known issues.

Log4Net
In the file 'coolOrange.powerJobs.dll.log4net' you can configurate powerJobs errorlogging. In the
standardinstallation you can find the file

coolOrange.powerJobs.dll.log4net

under

C:\ProgramData\Autodesk\Vault 2013\Extensions\coolOrange.PowerJobs.Handler

In the line

<level value="ERROR" />

you can config the logginglevel.

http://wiki.coolorange.com/powerJobs/07._Patchnotes
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

77

In the line

<param name="File" value="C:\temp\powerJobs.log" />

you can config the outputpath and name of the logfile.

For further information about Log4Net you could look at http://logging.apache.org/log4net/

Logginglevel

ALL Everything is written to the logfile

DEBUG Debuginformation is written to the logfile

INFO Every error, warnings and infos are written to the
logfile

WARN Every error and warnings are written to the logfile

ERROR Every error is written to the logfile

FATAL Only critical errors are written to the logfile

OFF No logging

Errorlog Paths

The standardpath for the errorlogs is C:\TEMP

The latest log is called 'powerjobs.log', the older ones 'powerjobs.log1', 'powerjobs.log2' etc.

When to use this feature?

Use this feature if you like to better understand what happens during the execution of your job, or in
case we request more information to support you.

http://wiki.coolorange.com/powerJobs/07._Patchnotes
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

78

http://logging.apache.org/log4net/

You get an error that some ddls cannot be found, while
debugging in Powergui
Make sure you are using the right version of powergui. For older versions of powerJobs you have to use
32bit version of powergui, but for powerJobs2014 you have to use the 64bit version.

Your jobserver hangs if you try to make PDFs or stops with an
error
Make sure that you started DWGTrueView and Inventor at least once and restarted your pc afterwards,
before using powerJobs.

If you start the jobserver with adminprivileges it can cause errors as well.

Related
• powerJobs

http://wiki.coolorange.com/powerJobs/08._Troubleshooting
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

79

http://wiki.coolorange.com/powerJobs

09. FAQ
1. Overview

2. Related

Overview
Frequently asked questions.

Related
Topics
Where's documentation for the Vault API?

Description of the Vault API

Tutorials

• Convert PDF to DWF (Beginner)

• How can I add a watermark/stamp to pdf? (Beginner)

• How can I add the revision to the name of the pdf-file? (Beginner)

• How can I convert pdf to pdf/a? (Beginner)

• How can I create a pdf with corresponding properties from original file? (Beginner)

• How can I create a PDF with same category, revision, state as the original file? (Beginner)

http://wiki.coolorange.com/powerJobs/09._FAQ
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

80

Convert PDF to DWF
1. Overview

2. Goal

2.1. First Step

2.2. Related

Overview
The standard jobs of powerJobs can not create a DWF from a PDF-file, but when you are looking for a
solution of doing this, we will give you some help.

Goal
After reading this tutorial and the blog you will be able to create your DWFs from a PDF.

Steps

First Step

All the information you'll need for creating your own job for powerJobs you can find on our blog, please
use the link to our blog:

http://blog.coolorange.com/2013/08/23/convert-pdf-to-dwf-in-net/

Related
• 09. FAQ

http://wiki.coolorange.com/powerJobs/09._FAQ/Convert_PDF_to_DWF
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

81

http://blog.coolorange.com/2013/08/23/convert-pdf-to-dwf-in-net/

How can I add a watermark/stamp to pdf?
1. Overview

2. Goal

2.1. First thing to do

2.2. Sample

2.3. How to use the these module in the powerJobs.CreatePdfAsAttachment job

2.3.1.1. with text

2.3.1.2. with images

2.4. How does the function work ?

2.4.1. Insert a stamp

2.4.2. Insert a watermark

2.4.3. Insert a image

3. iText API

4. Related

Overview
Explains how to add watermarks or stamps to pdf attachments via the iTextSharp.dll on PowerShell base. The

watermark/stamp can be a text or an image. Also you get showed how to add the script as a module to the

coolOrange.powerJobs.CreatePdfAsAttachment.ps1 job.

Goal
After completing this tutorial you will have the knowledge to customize your pdf attachments with
images, watermarks and stamps.

http://wiki.coolorange.com/powerJobs/09._FAQ/Convert_PDF_to_DWF
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

82

First thing to do

The first thing we have to do, is the download of the iTextSharp.dll. You can find the newest version of
iTextSharp you can find under this link:http://sourceforge.net/projects/itextsharp/files/latest/download

After downloading you have to "Unblock" your archive, else Windows wont allow the access
to the iTextSharp.dll via PowerShell.

You find the "Unblock" button with rightclick on the iTextSharp archive, then properties and afterwards in
the general-tab at the bottom.

It should look like this:

Click on the button to unblock the file, then you can extract the file.

Once the content is extracted, take the itextsharp.dll from the itextsharp-dll-core-5.2.1 folder and copy it
to C:\ProgramData\coolOrange\powerJobs\Modules. The PowerShell script attached to this post points to
this folder.

http://wiki.coolorange.com/powerJobs/09._FAQ/Convert_PDF_to_DWF
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

83

http://sourceforge.net/projects/itextsharp/files/latest/download

Sample

You can simply use our module coolOrange.powerJobs.PdfHelper.psm1, provided as attachment on this
page below. Just download it and move it in the C:\ProgramData\coolOrange\powerJobs\Modules folder.
Now you can use or customize the functions of the module in every Job, you want.

How to use the these module in the powerJobs.CreatePdfAsAttachment
job

with text

Just add the marked row at the same point as noted in this picture if you want plain text as stamp in pdf
files:

Or add the following row if you wan the lifecyclestate of your file as watermark

Of course you can use the same row also for Add-StampToPdf.

with images

Just use instead of a normal text the path of an image you want as stamp or watermark. The watermark
and stamp function will search the file and if the path is correct, the functions will insert the image in the
pdf, else the functions use the text as in the example above.

How does the function work ?

Insert a stamp

Now we are making our Stamp script. It gets explained at the end how to add an image or a watermark,
because there is only a little diffrence.

To write the script make sure you use atleast Powershell ISE or to have a better workflow powerGUI as
IDE. For more information about IDEs look into the "IDEs for powershell" topic.

The first step to our script is the loading of the iTextSharp.dll in our script enviroment, we get this done
with this row.

[System.Reflection.Assembly]::LoadFrom("C:\Sample_Path\itextsharp-all-5.2.1\itextsharp-dll-core-5.2.1\itextsharp.dll")

http://wiki.coolorange.com/powerJobs/09._FAQ/Convert_PDF_to_DWF
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

84

http://wiki.coolorange.com/powerJobs/4._Authoring_Jobs/IDEs_for_powershell

These are some font settings of the text, that we want to insert as a stamp in the pdf:

#region fontsettings$baseFont =
[iTextSharp.text.pdf.BaseFont]::CreateFont([iTextSharp.text.pdf.BaseFont]::HELVETICA,[System.Text.Encoding]::ASCII.EncodingName,"false")$fontSize
= 120.0$fcolor = New-Object iTextSharp.text.BaseColor (200,200,100)#calculating the angel of
the stamp with trigometrics the angel is around 45° in an A4 page$textAngle =
([System.Math]::Atan2($pageSize.Height, $pageSize.Width) + (180/
[System.Math]::PI))*1.0#endregion

$basefont just describes our font, what fondstyle it will use, what character encoding is preferred and if
the text is embedded. $fcolor is the font color in RGB. The $textangel decides in what angel the text is
written.

Now we begin with the proper PowerShell script. Here we go:

$file = New-Object System.IO.FileInfo "c:\\sample.pdf"$reader = New-Object
iTextSharp.text.pdf.PdfReader $file.FullNametry{ $mStream = New-Object
System.IO.MemoryStream $stamper = New-Object iTextSharp.text.pdf.PdfStamper ($reader,
$mStream) $padding = 2.0

$file is our pdf that we want to manipulate with a stamp, with this variable we get the pdf destination.
Then we create the PdfReader, it is a basic object of iTextsharp, with what we get the reading access to
the file. The $mStream MemoryStream has to save all our changes to the original pdf content, because
the PdfStamper stamper will only provide a copy of the pdf content, we have later to overwrite the old
pdf with the new manipulated pdf content.

$index = 1 do{ $pdfSize = $reader.GetPageSizeWithRotation($index) $overContent =
$stamper.GetOverContent($index) # begin creating the overLayer $overContent.MoveTo(0 +
$padding, 0 + $padding) $overContent.LineTo(0 + $padding, $pdfSize.Top - $padding)
$overContent.LineTo($pdfSize.Right - $padding, $pdfSize.Top - $padding)
$overContent.LineTo($pdfSize.Right - $padding, 0 + $padding) $overContent.ClosePath(); #
finished creating

The $index must be 1 because in a pdf the page 0 doesnt exist. In the following loop we are
manipulating one by one the pagecontent of our pdf. $pdfSize contains the measures of the current pdf
page, it makes a difference if the page is rotated or not. overContent is the variable filled by the
$stamper.getOverContent($index) and provides the highest layer of the pdf. Here we will place our
stamptext or image, there is just one problem, if the highest layer is empty, there will be no area to
write on. So we create our own layer(rectangle) and draw it on the page. For that we are using the
MoveTo() and LineTo(), how you can see the code will just draw from one corner to the next corner till
we have a rectangle with one missing site. ClosePath() will add the missing site to the
rectangle and place the rectangle in the overLayer.

inserting text $overContent.BeginText()
$overContent.SetFontAndSize($baseFont,$fontSize) $overContent.setColorFill($fcolor);
$overContent.ShowTextAligned([iTextSharp.text.pdf.PdfContentByte]::ALIGN_CENTER,
$stampText, $pdfSize.Width / 2, $pdfSize.Height / 2, $textAngle) $overContent.EndText() #
finished inserting text $index ++ }while($index -lt $reader.NumberOfPages)

http://wiki.coolorange.com/powerJobs/09._FAQ/Convert_PDF_to_DWF
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

85

Afterwards we can begin to write the text in the now writeable layer. Just write
$overContent.BeginText() to activate the write-mode in our $overContent, then we set the font, the font
size, font color and we insert the text with $overContent.ShowTextAligned() the first parameter decides,
if the text is centered or aligned to the left etc., the second parameter is the text as a string, the two
following parameters are the x and y coordinate of the text and the last one is the angle of the text.

$stamper.Close(); $fileStream = [System.IO.File]::OpenWrite($file.FullName)
$fileStream.Write($mStream.ToArray(), 0, $mStream.ToArray().Length)}catch{ throw
$_}finally{ $fileStream.Close() $mStream.Close()}

Now we have nearly finished. We close the stamper, because we wont change more in the content and
the changes, that are already done, are saved in the $mStream. We open a fileStream to our original pdf
and write the hole new content from $mStream to our pdf with $fileStream.Write(). In the last finally
statement we make sure to close our 2 streams, so afterwards we wont have problems with them.

Insert a watermark

If you want a watermark. Just remove the part where we created the rectangle in the overLayer and
change the method getOverLayer($index) to getUnderLayer($index). That should do the magic.

Insert a image

If you want your stamp as an image and not as a text. You have to remove the "inserting text" part,
make sure you haven’t removed the "creating rectangle" part! And in place of the "inserting text" part,
write the following code:

$image = [iTextSharp.text.Image]::GetInstance("C:\\Users\\Lukas
Egger\\Documents\\praktikum\\myJobs\\test.png")$image.SetAbsolutePosition($pdfSize.Width /
2 - $image.Width/2, $pdfSize.Height / 2-$image.Height/2)$overContent.AddImage($image)

Do the same thing as in "Insert a watermark" and then remove also here the " inserting text" part and
add also this time the 3 rows above. Regardless if you want to insert a stamp- or a watermark-image the
font settings part has here no use, just remove it.

iText API
On the web is unfortunately only a free Java API, so we have to work with that API. You can find it under
this link: http://api.itextpdf.com/itext/

Note that on the world wide web are many Java and C# tutorials for iText. You can use these as an
example and rewrite/modify them to PowerShell scriptcode without much of an effort in most cases.

Related
• 09. FAQ

http://wiki.coolorange.com/powerJobs/09._FAQ/How_can_I_add_a_watermark%2F%2Fstamp_to_pdf%3F
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

86

http://api.itextpdf.com/itext/

How can I add the revision to the name of the pdf-file?
1. Overview

2. Goal

2.1. First Step

2.2. Second Step

3. What's Next

4. Related

Overview
This tutorial gives you an overview to change the name of the creating pdf-file, for example by using the
revision of the file.

Goal
The goal is to create pdf-files with a specific name on powerjobs by editing the job.

Steps

First Step

By giving a look at the job-file "coolOrange.powerJobs.CreatePdfAsAttachment" you will find the entry
on line #36 where the name of the created pdf-file is defined. Here we have to make some changes in
the way that the revision will be appear in the name of the pdf-file:

#define here the file name for the generated PDF

$PDFfileName=$file.Name +".pdf"

http://wiki.coolorange.com/powerJobs/09._FAQ/How_can_I_add_a_watermark%2F%2Fstamp_to_pdf%3F
Updated: Wed, 26 Feb 2014 10:18:55 GMT

Powered by

87

Second Step

Before we can add the revision we have to get this information from the Vault using the Vault-API.

#get the revision of a file$props =$vault.PropService.GetPropertiesByEntityIds("FILE",
@($file.Id))$propDefs =$vault.PropService.GetPropertyDefinitionsByEntityClassId("FILE")$revDef
=$propDefs | Where-Object { $_.DispName -eq "Revision" }$revision =$props | Where-Object {
$_.PropDefId -eq $revDef.Id }

With this powershell-lines we can get the revision from the selected file $revision. After this we can
define the name of the created pdf:

$PDFfileName= [System.IO.Path]::GetFileNameWithoutExtension($file.Name)
+"_"+$revision.Val +".pdf"

This is an example for the new pdf-filename.

What's Next
This is what was achieved and what was omitted in this tutorial.

Related
• 09. FAQ

http://wiki.coolorange.com/powerJobs/09._FAQ/How_can_I_add_the_revision_to_the_name_of_the_pdf-
file%3F

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 88

How can I convert pdf to pdf/a?
The following script renders the table of contents for this page.

1. Overview

2. Automated Conversion

3. First Step

4. Second Step

5. Note

6. Related

Overview
Is it possible to convert pdf files from the coolOrange.powerJobs.CreatePdfAttachment script to pdf/a ?
Yes it is! The following instructions will show you how you can access that function with Ghostscript.

Automated Conversion
Do you want that the CreatePdfAttachment job creates immedatly a PDF/a 1-b ?

Then create under the LocalDestFile varibale a new varibale called locatOrigFile with the path
"C:\TEMP\original" + $PDFfileName. Afterwards just copy the function in one of the modules that you
use for powerJobs, preferably just use the coolOrange.powerJobs.PdfHelper.psm1, where Format-
PdfToPDfa1b is already included. Now call under the row 52 Format-PdfToPDfa1b and specify, that the
orignial is the one in the $localOrigFile and the converted file is the $LocalDestfile. At the end where the
script Removes the $localDestFile you have to add Remove-Item $localOrigFile.

The begin of the file should look like this:

http://wiki.coolorange.com/powerJobs/09._FAQ/How_can_I_add_the_revision_to_the_name_of_the_pdf-
file%3F

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 89

The part with the removing has to look like this:

First Step
The first we do, is downloading Ghostscript, you can use this link: http://sourceforge.net/projects/
ghostscript/files/GPL%20Ghostscript/9.05/gs905w64.exe/download

Note: You have to use 64bit version, because there can be issues with the 32bit, because the converting
can need alot ressources.

After downloading just execute the .exe and install the tool.

Second Step
The function itself has only some rows:

function Format-PdfToPdfa1b($original,$converted){$convertedparam = "-sOutputFile=" +
$converted$oldloc = Get-Locationcd "C:\Program Files\gs\gs9.05\bin\".\gswin64c.exe
-sDEVICE=pdfwrite -q -dNOPAUSE -dBATCH -dNOSAFER -dPDFA -dUseCIEColor
-sProcessColor=DeviceCMYK $convertedparam $originalcd $oldloc.Path}

Make sure where your Ghostscript is located. If it has a different location, you have to update the path at
row 5. Then you must copy the function Format-PdfToPdfa1b in a module that you want to include in
your job or in a other job, where you want to use this function and etc. Then you can call the function
with the following line :

Format-PdfToPdfa1b "sample.pdf" "convertedsample.pdf"

If you need more information about the parameters for the gswi64c.exe, you can use the documentation
of Ghostscript: http://www.ghostscript.com/doc/9.05/Readme.htm

http://wiki.coolorange.com/powerJobs/09._FAQ/How_can_I_add_the_revision_to_the_name_of_the_pdf-
file%3F

Updated: Wed, 26 Feb 2014 10:18:55 GMT
Powered by 90

http://sourceforge.net/projects/ghostscript/files/GPL%20Ghostscript/9.05/gs905w64.exe/download
http://sourceforge.net/projects/ghostscript/files/GPL%20Ghostscript/9.05/gs905w64.exe/download
http://www.ghostscript.com/doc/9.05/Readme.htm

Note
The PDF/a 1-b file can be really large. That is because all fonts have to be embedded and layers increase
also the file.

There is no warranty that the Conversion will work always, we tested the function it worked with every
pdf file we used, but still it may not work with special pdfs.

Use one of the following Pdf-Validator, to ensure that the pdf file conforms the PDF/a 1-b ISO standard.

http://www.pdf-tools.com/pdf/validate-pdfa-online.aspx

http://www.validatepdfa.com/online.htm

You can find the coolOrange.powerJobs.PdfHelper.psm1 in the attachments.

Related
• 09. FAQ

http://wiki.coolorange.com/powerJobs/09._FAQ/How_can_I_convert_pdf_to_pdf%2F%2Fa%3F
Updated: Wed, 26 Feb 2014 10:18:56 GMT

Powered by

91

http://www.pdf-tools.com/pdf/validate-pdfa-online.aspx
http://www.validatepdfa.com/online.htm

How can I create a pdf with corresponding properties from
original file?
1. Overview

2. Goal

2.1. First Step

2.2. Second Step

3. What's Next

Overview
We will Vault function UpdateFileProperties, but before we need know how to use that: the file must

before checket out, then we can update the properties and after that we can check the file in. We will
give you also an exemple how to get the properties of a file from the Vault.

Goal
After completing this tutorial you will have some understanding of work with the Vault. The goal is not
just to give you a complete working code, but to give you some ideas of how the Vault is working.

Steps

First Step

We need the Vaultfunction UpdateFileProperties to set the properties of a file that is checked out. After
this we can check in the file. This function needs some parameters like property-ids and propertie-
values, so we have to get this informations before.

Second Step

We can give a look to some lines of code:

http://wiki.coolorange.com/powerJobs/09._FAQ/How_can_I_convert_pdf_to_pdf%2F%2Fa%3F
Updated: Wed, 26 Feb 2014 10:18:56 GMT

Powered by

92

#region collect property definitions information$propDefs
=$vault.PropService.GetPropertyDefinitionsByEntityClassId("FILE") #get all property definitions
from Vault$udpDefs =$propDefs | Where-Object { $_.IsSys -eq$false } #filter user defined prop.
only$udpIds= @()$udpDefs| ForEach-Object { $udpIds+=$_.Id } #collect just the
ids#endregion#region collect values from existing
file$props=$vault.PropService.GetProperties("FILE",@($file.Id),$udpIds) #get selected (user
defined)properties from orig file$pIds= @()$vals= @()$props| ForEach-Object {
$pIds+=$_.PropDefId; $vals+=$_.Val } #create 2 lists: ids and vals#endregion

What's Next
Now we can check out the file and update the properties and then check it in:

#region apply properties to PDF#check out the PDF$newPdfFile
=Get-CheckoutVaultFile$vault$folder$pdfFile#update the
properties$vault.DocService.UpdateFileProperties(@($newPdfFile.MasterId),$pIds,$vals)#checkin
the file$newFile
=Get-CheckinVaultFile$vault$existingFile$localDestFile$null$checkInAsHidden#endregion

• 09. FAQ

http://wiki.coolorange.com/powerJobs/09._FAQ/
How_can_I_create_a_pdf_with_corresponding_properties_from_original_file%3F

Updated: Wed, 26 Feb 2014 10:18:56 GMT
Powered by 93

How can I create a PDF with same category, revision, state as
the original file?
1. Overview

2. Goal

2.1. First Step

2.2. Second Step

3. Related

Overview
Supposing you would like to create a PDF with the same Category, same State and the same Revision
Number as the file from which you would like to create a PDF, this tutorial will help you.

Goal
The goal is to have the PDF-generation with the same Category, State and Revision as the original file.

First Step

open the "coolOrange.powerJobs.CreatePdfAsAttachment.ps1" script and copy&paste these following
lines in the line 85 (before this function "Add-VaultDesignVizualizationFile $vault $file $newFile " gets
called) :

$vault.DocExtService.UpdateFileCategories(@($newFile.MasterId),@($file.Cat.CatId),"<Your
Comment>")$vault.DocExtService.UpdateFileRevisionNumbers(@($newFile.id),@($file.FileRev.Label),"<Your
Comment>")$vault.DocExtService.UpdateFileLifeCycleStates(@($newFile.MasterId),@($file.FileLfCyc.LfCycStateId),"<Your
Comment>")

http://wiki.coolorange.com/powerJobs/09._FAQ/
How_can_I_create_a_pdf_with_corresponding_properties_from_original_file%3F

Updated: Wed, 26 Feb 2014 10:18:56 GMT
Powered by 94

Second Step

Instead of using this function
$vault.DocExtService.UpdateFileCategories(@($newFile.MasterId),@($file.Cat.CatId),"<Your
Comment>") we advise you to use a Vault Option. Just open the vault, click on Tools/Administration/
Vault Settings a window should open, then click on the
Behaviors tab and click on the Rules button to decleare your new rule. In this case, click on New set the
Rule Name maybe to "PDF" and choose your Category Assignment, click on the ok button and make a
tick in the "Apply rules on file creation"-checkbox and apply your changes.

Related
• 09. FAQ

http://wiki.coolorange.com/powerJobs/09._FAQ/
How_can_I_create_a_PDF_with_same_category%2C_revision%2C_state_as_the_original_file%3F

Updated: Wed, 26 Feb 2014 10:18:56 GMT
Powered by 95

Where's documentation for the Vault API?
1. Overview

2. Details

Overview
Description of the Vault API

Details
If you have installed the Autodesk Vault 2013, you can find the documentation local under this
path C:\Program Files (x86)\Autodesk\Autodesk Vault 2013 SDK\docs. For all previous versions you
have perhaps only to change the version of Vault in the path.

You can also visit the Autodesk Developer Network(http://usa.autodesk.com/adsk/servlet/
index?siteID=123112&id=13433205). There you will find a developer community and some tutorials for
the Vault API.

http://wiki.coolorange.com/powerJobs/09._FAQ/Where's_documentation_for_the_Vault_API%3F
Updated: Wed, 26 Feb 2014 10:18:56 GMT

Powered by

96

http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=13433205
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=13433205

	coolOrange Wiki
	06. Customization
	Overview
	Related
	Anatomy of a powerJobs script
	Overview
	Details
	 Structure
	2013
	2014

	What's Next
	Related
	Code snippets
	Overview
	INFO
	Related
	Environment Variables
	Overview
	Details
	Error Handling
	Overview
	Details
	IDEs for powershell
	Overview
	Details
	Powershell 2.0 ISE
	2014

	PowerGUI
	2014

	Related
	Modules
	Overview
	Explanation
	Details about powerJobs modules
	Sample Modules
	2014

	PDF on item lifecycle change
	Overview
	Goal
	First Step
	Second Step

	What's Next
	Related
	PowerShell scripts and modules
	Overview
	Technology
	Modules
	2014
	Vendors
	Background and History

	Related
	The PowerJobs Objects
	Overview
	Details
	Methods of $powerJobs
	GetPublisher
	Publisher attributes:

	add_OnBeginPublish
	DownloadDependentFiles
	2014

	DownloadDependentFiles
	GetUniqueLatestFileByFilename
	GetLatestItemByNumber

	Members
	2014

	Related
	2013
	Overview
	Related
	2014
	Overview
	Related
	powershell general
	Overview
	Related
	Create .csv from BOM
	Overview
	Code
	Related

	Create DWG from an IDW
	Overview
	
	Code

	Related
	Create PDF from IDW
	Overview
	Code
	Related

	Create textfile via template
	Overview
	Goal
	First Step
	Example with an Assembly1.idw file:

	Related
	Create visible or invisible attachments
	Overview
	Settings
	Related
	Data to XML
	Overview
	Code
	Related

	PDF in an external folder
	Overview
	First Step
	Second Step
	Related
	Print via Inventor
	Overview
	Code
	Related

	Release via jobserver
	Overview
	Code 1
	Code 2
	

	Code 3
	Related
	Retrieve the user that queued the job
	Goal
	Code

	Related
	Selected files to ZIP
	Goal
	Code
	Related

	Send email via jobserver
	Overview
	Code
	Notification via Email
	Related

	Create .csv from BOM
	Overview
	Code
	Related

	Create DWG from an IDW
	Overview
	Code

	Related
	Create textfile via template
	Overview
	Goal
	First Step
	Example with an Assembly1.idw file:

	Related
	Data to XML
	Overview
	Code
	Related

	PDF in an external folder
	Overview
	First Step
	Second Step
	Related
	Print via Inventor
	Overview
	Code
	Related

	Release via jobserver
	Overview
	INFO
	Code 1
	Code 2
	Code 3
	Related
	Retrieve the user that queued the job
	Goal
	Info
	Code
	Related
	Selected files to ZIP
	Goal
	Code
	Related

	Send email via jobserver
	Overview
	Code
	Notification via Email
	To address from Vault property
	Related

	Copy file in a directory
	Overview
	Goal
	Code

	Related
	Insert into SQL server
	Goal
	First Step
	Second Step

	What's Next
	Related
	Print/convert Office documents
	Overview
	Prerequisites
	Word
	Excel

	Powerpoint
	Related
	Set default printer
	Goal
	Code
	Related

	Simple document print on default printer
	Overview
	Code
	Related
	07. Patchnotes
	Overview
	powerJobs 2014
	powerJobs 2013
	Related
	08. Troubleshooting
	Overview
	Log4Net
	Logginglevel
	Errorlog Paths
	When to use this feature?

	You get an error that some ddls cannot be found, while debugging in Powergui
	Your jobserver hangs if you try to make PDFs or stops with an error
	Related
	09. FAQ
	Overview
	Related
	Convert PDF to DWF
	Overview
	Goal
	First Step
	Related

	How can I add a watermark/stamp to pdf?
	Overview
	Goal
	First thing to do
	Sample
	How to use the these module in the powerJobs.CreatePdfAsAttachment job
	with text
	with images

	How does the function work ?
	Insert a stamp
	Insert a watermark
	Insert a image

	iText API
	Related
	How can I add the revision to the name of the pdf-file?
	Overview
	Goal
	First Step
	Second Step

	What's Next
	Related
	How can I convert pdf to pdf/a?
	Overview
	Automated Conversion
	First Step
	Second Step
	Note
	Related
	How can I create a pdf with corresponding properties from original file?
	Overview
	Goal
	First Step
	Second Step

	What's Next
	How can I create a PDF with same category, revision, state as the original file?
	Overview
	Goal
	First Step
	Second Step

	Related
	Where's documentation for the Vault API?
	Overview
	Details

